

Table of Contents
ASP.NET Web API Security Essentials
Credits
About the Author
Acknowledgments
About the Reviewer
www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?
Free access for Packt account holders

Preface
What this book covers
What you need for this book
Who this book is for

Conventions
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Setting up a Browser Client
ASP.NET Web API security architecture
Setting up your browser client

Implementing Web API lookup service
Adding a model
Adding a controller

Consuming the Web API using JavaScript and jQuery
Getting a list of contacts
Getting a contact by ID
Running the application

Authentication and authorization
Authentication
Authorization

Implementing authentication in HTTP message handlers
Setting the principal
Using the [Authorize] attribute

Global authorization filter
Controller level authorization filter
Action level authorization filter

Custom authorization filters
Authorization inside a controller action
Summary

2. Enabling SSL for ASP.NET Web API
Enforcing SSL in a Web API controller
Using client certificates in Web API

Creating an SSL Client Certificate
Configuring IIS to accept client certificates
Verifying Client Certificates in Web API

Summary
3. Integrating ASP.NET Identity System with Web API

Creating an Empty Web API Application
Installing the ASP.NET Identity NuGet packages
Setting up ASP.NET Identity 2.1

ASP.NET Identity
Defining Web API Controllers and methods

Testing the application
Summary

4. Securing Web API Using OAuth2
Hosting OWIN in IIS and adding Web API to the OWIN pipeline
Individual User Account authentication flow
Sending an unauthorized request
Get an access token
Send an authenticated request
Summary

5. Enabling Basic Authentication using Authentication Filter in Web
API

Basic authentication with IIS
Basic authentication with custom membership
Basic authentication using an authentication filter
Setting an authentication filter

Action-level authentication filter
Controller-level authentication filter
Global-level authentication filter

Implementing a Web API authentication filter
Setting an error result
Combining authentication filters with host-level authentication
Summary

6. Securing a Web API using Forms and Windows Authentication
Working of Forms authentication
Implementing Forms authentication in Web API
What is Integrated Windows Authentication?
Advantages and disadvantages of using the Integrated Windows

Authentication mechanism
Configuring Windows Authentication
Difference between Basic Authentication and Windows

authentication
Enabling Windows authentication in Katana
Summary

7. Using External Authentication Services with ASP.NET Web API
Using OWIN external authentication services

Creating an ASP.NET MVC Application
Implementing Facebook authentication
Implementing Twitter authentication
Implementing Google authentication
Implementing Microsoft authentication
Discussing authentication
Summary

8. Avoiding Cross-Site Request Forgery Attacks in Web API
What is a CSRF attack?
Anti-forgery tokens using HTML Form or Razor View

How does an Anti-forgery token work?
Anti-forgery tokens using AJAX
Summary

9. Enabling Cross-Origin Resource Sharing (CORS) in ASP.NET
Web API

What is CORS?
How CORS works

Setting the allowed origins
Setting the allowed HTTP methods
Setting the allowed request headers
Setting the allowed response headers
Passing credentials in cross-origin requests
Enabling CORS at various scope

Enable at action level
Enable at controller level
Enable CORS globally

Summary
Index

ASP.NET Web API Security
Essentials

ASP.NET Web API Security
Essentials
Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means,
without the prior written permission of the publisher, except in the
case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing, and its dealers and
distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book by
the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: November 2015

Production reference: 1241115

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-221-0

www.packtpub.com

http://www.packtpub.com/

Credits
Author

Rajesh Gunasundaram

Reviewer

Anuraj Parameswaran

Commissioning Editor

Amarabha Banerjee

Acquisition Editor

Prachi Bisht

Content Development Editor

Anish Dhurat

Technical Editor

Danish Shaikh

Copy Editor

Vibha Shukla

Project Coordinator

Harshal Ved

Proofreader

Safis Editing

Indexer

Mariammal Chettiyar

Production Coordinator

Nilesh Mohite

Cover Work

Nilesh Mohite

About the Author
Rajesh Gunasundaram is a software architect, technical writer and
blogger. He has over 13 years of experience in the IT industry, with
more than 10 years using Microsoft's .NET and 2 years of using
BizTalk Server, and a year of iOS application development.

Rajesh is a founder and an editor of technical blogs:
www.programmerguide.net and www.ioscorner.com. You can find
many of his technical writings on .NET and iOS.

Rajesh holds a master's degree in computer application and began
his career as a software engineer in the year 2002. He has worked
on client premises located in various countries, such as the UK,
Belarus, and Norway. He is also experienced in developing mobile
applications for iPhone and iPad.

His technical strengths include Objective-C, C#, ASP.NET MVC,
Web API, WCF, .Net Framework 4.5, AngularJS, BizTalk, SQL
Server, REST, SOA, design patterns, and software architecture.

http://www.programmerguide.net/
http://www.ioscorner.com/

Acknowledgments
I am greatly thankful to my beloved and wonderful friend Ahila
Dhayalan, who has constantly encouraged and motivated me while
writing this book. She put me back on track whenever I deviated
from my schedule of submitting the chapters. Without her support
and encouragement, this book wouldn't have been possible.

I am also thankful to the entire team at Packt Publishing for providing
me the opportunity to author this book.

Thanks to Prachi Bisht for having confidence in me and giving me
the opportunity to write this book.

Thanks to Ajinkya Paranjape for having high regard for me and
providing invaluable assistance.

Thanks to Anish Dhurat for guiding and helping me to shape the
content of the book.

Thanks to Danish Shaikh for verifying the technical content and
bringing it to a good shape.

About the Reviewer
Anuraj Parameswaran works as an architect in Orion India Systems
Pvt. Ltd., Kochi. He has extensive experience of more than ten years
in working on different technologies, mostly in the Microsoft space.
He has been working on the .NET platform since its early days. He
leads the technology and innovation team at Orion. He is a
cofounder of MobiThoughts, a mobile application development
company. His focus areas are data analytics, architecture, and Cloud
computing.

He writes about technology in his popular blog at
http://www.dotnetthoughts.net/. He is a K-MUG Community Council
member and an active volunteer in Microsoft Technology
Community.

http://www.dotnetthoughts.net/

www.PacktPub.com

Support files, eBooks, discount
offers, and more
For support files and downloads related to your book, please visit
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in
touch with us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is
Packt's online digital book library. Here, you can search, access, and
read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.packtpub.com/
http://www.packtpub.com/
mailto:service@packtpub.com
http://www.packtpub.com/
https://www2.packtpub.com/books/subscription/packtlib

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can
use this to access PacktLib today and view 9 entirely free books.
Simply use your login credentials for immediate access.

I would like to dedicate this book to my wife, Sairabanu, and my
brothers, Magesh and Nithish, as they are my driving factors.

http://www.packtpub.com/

Preface
ASP.NET Web API is a framework that makes it easy to build HTTP
services that reach a broad range of clients, including browsers and
mobile devices. It is an ideal platform to build RESTful applications
on the .NET Framework.

This book provides a practical guide to secure your ASP.NET Web
API by various security techniques, such as integrating the ASP.NET
Identity system, implementing various authentication mechanisms,
enabling Secured Socket Layer (SSL), preventing cross-site
request forgery attacks, and enabling cross-origin resource sharing.

What this book covers
Chapter 1, Setting up a Browser Client, helps you to set up a
browser client in order to use Web API services. It also covers
ASP.NET Web API Security Architecture and authentication, and
authorization to secure a web API from unauthorized users.

Chapter 2, Enabling SSL for ASP.NET Web API, explains how to use
SSL with ASP.NET Web API, including using SSL client certificates.
There are several common authentication schemes that are not
secured over plain HTTP in particular Basic authentication and forms
authentication, which send unencrypted credentials. In order to be
secure, these authentication schemes must use SSL. In addition to
this, SSL client certificates can be used to authenticate clients.

Chapter 3, Integrating ASP.NET Identity System with ASP.NET Web
API, explains how to integrate the ASP.NET Identity system with
ASP.NET Web API. The ASP.NET Identity system is designed to
replace the previous ASP.NET Membership and Simple Membership
systems. It includes profile support and OAuth integration. It works
with OWIN and is included with ASP.NET templates that are shipped
with Visual Studio 2013 and later versions.

Chapter 4, Securing a web API using OAuth2, shows you how to
secure a web API using OAuth2 to authenticate against a
membership database using the OWIN middleware. You will be able
to use local logins to send authenticated requests using OAuth2.

Chapter 5, Enabling Basic Authentication using Authentication Filters
in Web API, covers how to set an authentication scheme for
individual controllers or actions using Authentication filters. This
chapter shows an authentication filter that implements the HTTP
Basic Access Authentication scheme. It will also cover the
advantages and disadvantages of using Basic Authentication.

Chapter 6, Securing a Web API using Forms and Windows
Authentication, explains how to secure a web API using Forms
Authentication and how users can log in with their Windows
credentials using Integrated Windows Authentication. You will also
get to learn the advantages and disadvantages of using Forms and
Windows Authentication in Web API. Forms authentication uses an
HTML form to send the user's credentials to the server. Integrated
Windows Authentication enables the users to log in with their
Windows credentials, using Kerberos or NTLM. The client sends
credentials in the Authorization header. Windows authentication is
best suited for an intranet environment.

Chapter 7, Using External Authentication Services with ASP.NET
Web API, helps you to understand the need for external
authentication services in order to enable OAuth/OpenID and social
media authentication. Using external authentication services helps in
reducing development time when creating new web applications.
Web users typically have several existing accounts for popular web
services and social media websites; therefore, when a web
application implements the authentication services from an external
web service or social media website, it saves the development time
that would have been spent while creating an authentication
implementation. Using an external authentication service saves the
end users from creating another account for the web application and
having to remember yet another username and password.

Chapter 8, Preventing Cross-Site Request Forgery (CSRF) Attacks
in Web API, helps you to implement anti-CSRF measures in
ASP.NET Web API. Using an API key-based authentication, or a
more sophisticated mechanism such as OAuth, helps in preventing
CSRF attacks. ASP.NET MVC uses anti-forgery tokens, which are
also called request verification tokens.

Chapter 9, Enabling Cross-Origin Resource Sharing (CORS) in
ASP.NET Web API, explains how to enable CORS in your Web API
application. Browser security prevents a web page from making
AJAX requests to another domain. This restriction is called the

same-origin policy and prevents a malicious site from reading
sensitive data from another site. However, sometimes you might
want to let other sites call your web API.

What you need for this book
Software requirements for development:

Visual Studio 2013 or Later version
Windows 7 or Later version

Hardware requirements for development:

1.6 GHz or faster processor
1 GB of RAM (1.5 GB if running on a virtual machine)
10 GB (NTFS) of the available hard disk space
5400 RPM hard drive
DirectX 9-capable video card running at 1024 x 768 or higher
display resolution

Who this book is for
This book is intended for everyone having the knowledge of
developing an ASP.NET Web API application. Good working
knowledge and experience with C# and the .NET framework are
prerequisites in order to learn from this book.

Conventions
In this book, you will find a number of text styles that distinguish
between different kinds of information. Here are some examples of
these styles and explanations of their meanings.

Code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter
handles are shown as follows: "We can include other contexts
through the use of the include directive."

A block of code is set as follows:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code
block, the relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-
addons/configs/cdr_mysql.conf.sample
 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you
see on the screen, for example, in menus or dialog boxes, appear in
the text like this: "Clicking the Next button moves you to the next
screen."

Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what
you think about this book—what you liked or disliked. Reader
feedback is important for us as it helps us develop titles that you will
really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>
and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in
either writing or contributing to a book, see our author guide at
www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a
number of things to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you have
purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you find a mistake in one of our
books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that
title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the
name of the book in the search field. The required information will
appear under the Errata section.

Piracy

http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy of copyrighted material on the Internet is an ongoing problem
across all media. At Packt, we take the protection of our copyright
and licenses very seriously. If you come across any illegal copies of
our works in any form on the Internet, please provide us with the
location address or website name immediately so that we can
pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the
suspected pirated material.

We appreciate your help in protecting our authors and our ability to
bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact
us at <questions@packtpub.com>, and we will do our best to address
the problem.

mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Chapter 1. Setting up a Browser
Client
If you are reading this book, it is because you understand the
importance of securing your web API. ASP.NET Web API is a
framework that helps in building HTTP services that can be utilized
by a wide range of clients. So it is very important to secure your Web
API.

ASP.NET Web API 1.0 doesn't have any security features so the
security is provided by the host such as Internet Information Server.
In ASP.NET Web API 2, security features such as Katana were
introduced. To secure Web API, let's understand various techniques
that are involved and choose the right approach.

In this chapter, we will cover the following topics:

ASP.NET Web API security architecture
Setting up your browser client
Authentication and authorization
Implementing authentication in HTTP message handlers
Setting the principal
Using the [Authorize] Attribute
Custom authorization filters
Authorization inside a controller action

ASP.NET Web API security
architecture
This section will give you an overview of the Web API security
architecture and show you all the various extensibility points that can
be used for security related things. The ASP.NET Web API security
architecture is composed of three main layers. The hosting layer acts

as an interface between the Web API and network stacks. The
message handler pipeline layer enables implementing cross-cutting
concerns such as authentication and caching. The controller
handling layer is where the controllers and actions are executed,
parameters are bound and validated, and HTTP response message
is created. This layer also contains a filter pipeline, as shown in the
following figure:

Fig 1 – This image shows the components involved in securing the Web API

Let's briefly discuss the purpose of each components in the Web API
pipeline, as follows:

Open Web Interface for .NET (OWIN) is the new open
standard hosting infrastructure. Microsoft has built its own
framework called Katana on top of OWIN and all Web API
security techniques such as authentication methods (for
example, token-based authentication) and support for social
login providers (for example, Google and Facebook) will be
happening on the OWIN layer.
Message Handler is a class that receives an HTTP request and
returns an HTTP response. Implementing authentication at
message handler level is not recommended. Message handlers
are used for Cross-Origin Resource Sharing (CORS).
Authentication Filters are guaranteed to run before the
authorization filter. If you are not interested in operating your
authentication logic at the OWIN layer, you can straightaway

move to controllers or actions. Authentication filters are really
useful to invoke OWIN-based authentication logic.
Authorization Filters are the places in the pipeline where you
can recheck the request before the actual expensive business
logic stuff runs in the model binding and validation, and the
controller action is invoked.

Now that we are familiar with the security architecture, we will set up
the client.

Setting up your browser client
Let's create a Web API for Contact Lookup. This Contact Lookup
Web API service will return the list of contacts to the calling client
application. Then we will be consuming the Contact Lookup service
using the jQuery AJAX call to list and search contacts.

This application will help us in demonstrating the Web API security
throughout this book.

Implementing Web API lookup service
In this section, we are going to create a Contact Lookup web API
service that returns a list of contacts in the JavaScript Object
Notation (JSON) format. The client that consumes this Contact
Lookup is a simple web page that displays the list of contacts using
jQuery. Follow these steps to start the project:

1. Create New Project from the Start page in Visual Studio.
2. Select Visual C# Installed Template named Web.
3. Select ASP.NET Web Application in the center pane.
4. Name the project ContactLookup and click OK, as shown in the

following screenshot:

Fig 2 – We have named the ASP.NET Web Application "ContactLookup"

5. Select the Empty template in the New ASP.NET Project dialog
box.

6. Check Web API and click OK under Add folders and core
references, as shown in the following:

Fig 3 – We select the Empty Web API template

We just created an empty Web API project. Now let's add the
required model.

Adding a model
Let's start by creating a simple model that represents a contact with
the help of the following steps:

1. First, define a simple contact model by adding a class file to the
Models folder.

Fig 4 – Right-click on the Models folder and Add a Model Class

2. Name the class file Contact and declare properties of the
Contact class.

namespace ContactLookup.Models
{
 public class Contact
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public string Email { get; set; }
 public string Mobile { get; set; }
 }
}

We just added a model named Contact. Let's now add the required
web API controller.

Adding a controller

HTTP requests are handled by controller objects in Web API. Let's
define a controller with two action methods. One action to return the
list of contacts and other action to return a single contact specific to
a given ID:

1. Add the Controller under the Controllers folder in Solution
Explorer.

Fig 5 – Right-click on the Controllers folder and Add a Controller

2. Select Web API Controller – Empty and click on Add in the
Add Scaffold dialog.

Fig 6 – Select an Empty Web API Controller

3. Let's name the controller ContactsController in the Add
Controller dialog box and click Add.

Fig 7 – Naming the controller

This creates the ContactsController.cs file in the Controllers
folder as shown in the following image:

Fig 8 – ContactsController is added to the Controllers folder in the application

1. Replace the code in ContactsController with the following code:
namespace ContactLookup.Controllers
{
 public class ContactsController :
ApiController
 {
 Contact[] contacts = new Contact[]
 {
 new Contact { Id = 1, Name =
"Steve", Email = "steve@gmail.com", Mobile =
"+1(234)35434" },
 new Contact { Id = 2, Name =
"Matt", Email = "matt@gmail.com", Mobile =
"+1(234)5654" },
 new Contact { Id = 3, Name =
"Mark", Email = "mark@gmail.com", Mobile =
"+1(234)56789" }
 };

 public IEnumerable<Contact>
GetAllContacts()
 {
 return contacts;
 }

 public IHttpActionResult
GetContact(int id)
 {
 var contact =

contacts.FirstOrDefault(x => x.Id == id);
 if (contact == null)
 {
 return NotFound();
 }
 return Ok(contact);
 }
 }
}

For simplicity, contacts are stored in a fixed array inside the
controller class. The controller is defined with two action methods.
List of contacts will be returned by the GetAllContacts method in
the JSON format and the GetContact method returns a single
contact by its ID. A unique URI is applied to each method on the
controller as given in the following table:

Controller Method URI

GetAllContacts /api/contacts

GetContact /api/contacts/id

Consuming the Web API using
JavaScript and jQuery
In this section, in order to demonstrate calling the web API with or
without any security mechanisms, let's create an HTML page that
consumes web API and update the page with the results using the
jQuery AJAX call:

1. In the Solution Explorer pane, right-click on the project and
add New Item.

Fig 9 – Select add new item from the context menu in Solution Explorer

2. Create HTML Page named index.html using the Add New Item
dialog.

Fig 10 – Add an index html file by selecting HTML page in the Add New Item dialog

3. Replace the content of the index.html file with the following
code:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Contact Lookup</title>
</head>
<body>

 <div>
 <h2>All Contacts</h2>
 <ul id="contacts" />
 </div>
 <div>
 <h2>Search by ID</h2>
 <input type="text" id="contactId" size="5"
/>
 <input type="button" value="Search"
onclick="search();" />
 <p id="contact" />
 </div>

 <script
src="http://ajax.aspnetcdn.com/ajax/jQuery/jqu
ery-2.0.3.min.js"></script>

 <script>
 var uri = 'api/contacts';

 $(document).ready(function () {
 // Send an AJAX request
 $.getJSON(uri)
 .done(function (data) {
 // On success, 'data' contains a
list of contacts.
 $.each(data, function (key,
contact) {
 // Add a list item for the
contact.
 $('', { text:
formatItem(contact)
}).appendTo($('#contacts'));
 });
 });
 });

function formatItem(contact) {
 return contact.Name + ', email: '
+ contact.Email + ', mobile: ' +
contact.Mobile;
}

 function search() {
 var id = $('#contactId').val();
 $.getJSON(uri + '/' + id)
 .done(function (data) {

$('#contact').text(formatItem(data));
 })
 .fail(function (jqXHR, textStatus,
err) {
 $('#contact').text('Error: ' +
err);
 });
 }
 </script>
</body>
</html>

Getting a list of contacts

We need to send an HTTP GET request to /api/contacts to get the
list of contacts. The AJAX request is sent by the jQuery getJSON
function and the array of JSON objects is received in the response.
A callback function in the done function is called if the request
succeeds. In the callback, we update the DOM with the contact
information, as follows:

$(document).ready(function () {
 // Send an AJAX request
 $.getJSON(uri)
 .done(function (data) {
 // On success, 'data' variable
contains a list of contacts.
 $.each(data, function (key, contact) {
 // Add a list item for the contact.
 $('', { text:
formatItem(contact) }).appendTo($('#contacts'));
 });
 });
 });

Getting a contact by ID
To get a contact by ID, send an HTTP GET request to
/api/contacts/id, where id is the contact ID.

function search() {
 var id = $('#contactId').val();
 $.getJSON(uri + '/' + id)
 .done(function (data) {
 $('#contact').text(formatItem(data));
 })
 .fail(function (jqXHR, textStatus, err)
{
 $('#contact').text('Error: ' + err);
 });
 }

The request URL in getJSON has the contact ID. The response is a
JSON representation of a single contact for this request.

Running the application
Start debugging the application by pressing F5. To search for a
contact by ID, enter the ID and click on Search:

Fig 11 – User Interface of the Sample Browser-based Client Application

Authentication and
authorization
We have created a simple web API that returns the list of contacts or
specific contacts by ID. This web API can be accessed by any client
that supports HTTP and is not secured enough. With the help of
authentication and authorization mechanisms, we can secure this
web API from unauthorized access.

Authentication mechanism helps in identifying the valid user
and authenticating them using the identity of the user. Here, the
identity can be a username and password.
Authorization mechanism helps in restricting unauthorized
access to an action. For example, An unauthorized user can get
the list of contacts. But he is restricted to create new contact.

Authentication
Authentication is carried out in the host Internet Information
Service (IIS) for web API. Internet Information Service uses HTTP
modules for authentication. We can also implement custom
authentication with our own HTTP module.

The host creates a principal when it authenticates the user. Principal
is an IPrincipal object that represents the security context under
which the code is running. You can access the current principal from
Thread.CurrentPrincipal, which is attached by the host. The user
information can be accessed from the Identity object of principal.
The Identity.IsAuthenticated property returns true if the user is
authenticated. The Identity.IsAuthenticated will return false if the
user is not authenticated.

Authorization

Authorization happens after successful authentication is provided to
the controller. It helps you to grant access to resources when more
granular choices are made.

For any unauthorized requests, the authorization filter returns an
error response and does not allow the action to be executed. This
happens as the authorization filters will be executed first before any
statements in the controller action.

Implementing authentication in
HTTP message handlers
For a self-hosted web API, the best practice is to implement
authentication in an HTTP Message Handler. The principal will be
set by the message handler after verifying the HTTP request. For a
web API that is self-hosted, consider implementing authentication in
a message handler. Otherwise, use an HTTP module instead.

The following code snippet shows an example of basic
authentication implemented in an HTTP module:

public class AuthenticationHandler :
DelegatingHandler
 {
 protected override
Task<HttpResponseMessage>
SendAsync(HttpRequestMessage request,

CancellationToken cancellationToken)
 {
 var credentials =
ParseAuthorizationHeader(request);

 if (credentials != null)
 {
 // Check if the username and
passowrd in credentials are valid against the
ASP.NET membership.
 // If valid, the set the current
principal in the request context
 var identity = new
GenericIdentity(credentials.Username);
 Thread.CurrentPrincipal = new
GenericPrincipal(identity, null);;
 }

 return base.SendAsync(request,
cancellationToken)
 .ContinueWith(task =>
 {

 var response = task.Result;
 if (credentials == null &&
response.StatusCode ==
HttpStatusCode.Unauthorized)
 Challenge(request,
response);

 return response;
 });
 }

 protected virtual Credentials
ParseAuthorizationHeader(HttpRequestMessage
request)
 {
 string authorizationHeader = null;
 var authorization =
request.Headers.Authorization;
 if (authorization != null &&
authorization.Scheme == "Basic")
 authorizationHeader =
authorization.Parameter;

 if
(string.IsNullOrEmpty(authorizationHeader))
 return null;

 authorizationHeader =
Encoding.Default.GetString(Convert.FromBase64Strin
g(authorizationHeader));

 var authenticationTokens =
authorizationHeader.Split(':');
 if (authenticationTokens.Length < 2)
 return null;

 return new Credentials() { Username =
authenticationTokens[0], Password =
authenticationTokens[1], };
 }

 void Challenge(HttpRequestMessage request,
HttpResponseMessage response)
 {
 response.Headers.Add("WWW-
Authenticate", string.Format("Basic realm=\"
{0}\"", request.RequestUri.DnsSafeHost));
 }

 public class Credentials
 {
 public string Username { get; set; }
 public string Password { get; set; }
 }
 }

Setting the principal
If the application has the custom authentication logic implemented,
then we must set the principal in two places:

Thread.CurrentPrincipal is the standard way to set the thread's
principal in .NET.
HttpContext.Current.User is specific to ASP.NET.

The following code shows setting up the principal:

private void SetPrincipal(IPrincipal principal)
{
 Thread.CurrentPrincipal = principal;
 if (HttpContext.Current != null)
 {
 HttpContext.Current.User = principal;
 }
}

Using the [Authorize] attribute
AuthorizeAttribute will make sure if the user is authenticated or
unauthenticated. Unauthorized error with HTTP status code 401 will
be returned if the user is not authenticated and the corresponding
action will not be invoked. Web API enables you to apply the filter in
three ways. We can apply them at global level, or at the controller
level, or at the individual action level.

Global authorization filter
To apply authorization filter for all Web API controllers, we need to
add the AuthorizeAttribute filter to the global filter list in the
Global.asax file as given below:

public static void Register(HttpConfiguration
config)
{
 config.Filters.Add(new AuthorizeAttribute());
}

Controller level authorization filter
To apply an authorization filter for a specific controller, we need to
decorate the controller with filter attribute as given in the following
code:

// Require authorization for all actions on the
controller.
[Authorize]
public class ContactsController : ApiController
{
 public IEnumerable<Contact> GetAllContacts() {
... }
 public IHttpActionResult GetContact(int id) {
... }
}

Action level authorization filter
To apply an authorization filter for specific actions, we need to add
the attribute to the action method as given in the following code:

public class ContactsController : ApiController
{
 public IEnumerable<Contact> GetAllContacts() {
... }

 // Require authorization for a specific
action.
 [Authorize]
 public IHttpActionResult GetContact(int id) {
... }
}

Custom authorization filters
To implement a custom authorization filter, we need to create a class
that derives either AuthorizeAttribute,
AuthorizationFilterAttribute, or IAuthorizationFilter.

AuthorizeAttribute: An action is authorized based on the
current user and the user's roles.
AuthorizationFilterAttribute: Synchronous authorization logic
is applied and it may not be based on the current user or role.
IAuthorizationFilter: Both AuthorizeAttribute and
AuthorizationFilterAttribute implement IAuthorizationFilter.
IAuthorizationFilter is to be implemented if advanced
authorization logic is required.

Authorization inside a
controller action
Sometimes, it may be required to change the behavior after
processing the request based on the principal. In such scenarios, we
can implement authorization in a controller action. For example, if
you would like to manipulate the response based on the user's role,
we can verify the logged-in user role from the ApiController.User
property in the action method itself:

public HttpResponseMessage Get()
{
 if (!User.IsInRole("Admin"))
 {
 // manipulate the response to eliminate
information that shouldn't be shared with non
admin users
 }
}

Summary
That was easy, wasn't it? We just set up the security for our
APS.NET Web API that we will build upon in the upcoming chapters.

You learned about the security architecture of ASP.NET Web API
that gave an overall view of what's under the hood. We then set up
our browser client, from implementing the Web lookup service to
calling the Web API with JavaScript and jQuery code.

You also learned about authentication and authorization techniques,
which we will be covering in great detail later in the book. Moving on,
you learned about HTTP Message Handlers, Principal, and the
[Authorize] Attribute to control the authorization for the users.

Finally, you learned about custom authorization and authorization in
a controller action to alter the behavior after processing the request
based on the principal.

You learned a lot of stuff in this chapter. However, this is just the
beginning. In the next chapter, you will implement a secured socket
layer to the Web API. Let's get the ball rolling!

Chapter 2. Enabling SSL for
ASP.NET Web API
In this chapter, we will discuss the implementation of SSL with
ASP.NET Web API and authentication of users using SSL client
certificates. Authentication schemes over plain HTTP are not secure.
For example, basic authentication and forms authentication send
plain texts, such as the username and password. So, to protect the
plain texts from vulnerability, we use SSL and also authenticate
clients using the SSL client certificates.

In this chapter, we will cover the following topics:

Enforcing SSL in a Web API controller
Using Client certificates in Web API

Enforcing SSL in a Web API
controller
The Secure Sockets Layer (SSL) encryption protects the
credentials exchanged between a client and a server. SSL enables a
secure channel to transfer authentication messages in an encrypted
format. The 128-bit and 256-bit SSL encryption techniques are more
secure. Required 128-bit or 256-bit SSL is used if confidential or
personal data is to be transmitted between a client and server. It is
very difficult to decrypt the content that is encrypted using the 128-bit
or 256-bit encryption technique.

SSL and Transport Level Security (TLS) use a combination of
public key and symmetric key encryption. The SSL handshake is an
exchange of messages during the initial communication between the
server and client. Using public-key techniques allows the server to
authenticate itself to the client during this handshake process.

RSA is a key exchange algorithm that governs the way the server
and client determine the symmetric keys to use during an SSL
handshake. The SSL cipher suites use an RSA key exchange and
the TLS supports the ECC cipher suites and RSA.

OpenSSH is based on the SSH protocol and it helps in securing the
network communication through network traffic encryption over
multiple authentication methods and by providing secure tunneling
capabilities. OpenSSH is a free and open source that can be used
as an alternative to the unencrypted network communication
protocols like FTP and Rlogin.

Enabling SSL allows the clients to access the site using the URLs
that start with HTTPS. We can create Self-Signed Certificates in IIS 7
or later versions; it can be used to enable SSL for a site and add an
HTTPS binding. For development purpose, we can enable SSL in IIS
Express from Visual Studio and set SSL Enabled to True in the
Properties window, as shown in the following screenshot:

In some situations, we may want to support both HTTPS and HTTP
binding. We can enable HTTP for some resources or actions and
SSL for others. In such cases, we can add the actions with the
RequireHttps filter attribute to required SSL. The following code is a
Web API authentication filter that verifies for SSL:

public class RequireHttpsAttribute :
AuthorizationFilterAttribute
{
 public override void
OnAuthorization(HttpActionContext actionContext)
 {
 if
(actionContext.Request.RequestUri.Scheme !=
Uri.UriSchemeHttps)
 {
 actionContext.Response = new
HttpResponseMessage(System.Net.HttpStatusCode.Forb
idden)
 {
 ReasonPhrase = "HTTPS Required"
 };
 }
 else
 {
 base.OnAuthorization(actionContext);
 }
 }
}

As shown in the following, you can add any Web API action that
requires SSL with the RequireHttps filter:

public class ContactsController : ApiController
{
 [RequireHttps]
 public IEnumerable<Contact> GetAllContacts() {
... }
}

Using client certificates in Web
API
To digitally identify whether a user is an authenticated user, client
certificates are used. This is an enhanced security mechanism unlike
using username and password for security as this is a simple
validation. Client certificates allow a web application to authenticate
its users by verifying a certificate that is provided by the client before
the HTTP connection is established.

Creating an SSL Client Certificate
The following steps will create a test root authority and client
certification for development and testing purpose:

1. Open Developer Command Prompt for Visual Studio.
2. Run the following command:

makecert.exe -n "CN=Dev CA" -r -sv DevCA.pvk
DevCA.cer

3. Enter the certificate password when prompted by makecert for
private key.

The preceding steps help in creating the Root Certification Authority
certificate. Now let's install the DevCA.cer certificate on our Trusted
Root Certification Authorities for the local machine store using
Microsoft Management Control (MMC) by following the steps:

1. Open Microsoft Management Control.
2. Click on Add/Remove Snap-in from the File menu.
3. Select Certificates from the list of Available snap-ins and click

on the Add button.
4. Choose Computer Account from the Certificates snap-in

popup to manage certificates and click on the Next button.

5. Select Local Computer in the Select Computer window and
click on the Finish button.

6. Now click on OK to return to MMC.
7. Under the Console Root tree view, select the Trusted Root

Certification Authorities node.
8. Click on More Actions in the Actions pane and navigate to All

Tasks | Import to import certificate.
9. Browse for the DevCA.cer certificate file and click on the Open

button.
10. Click on Next and complete the wizard.
11. Re-enter the password when prompted.
12. Execute the following command in Developer Command Prompt

for Visual Studio to create a signed client certificate:
makecert.exe -pe -ss My -sr CurrentUser -a
sha1 -sky exchange -n "CN=name" -eku
1.3.6.1.5.5.7.3.2 -sk SignedByCA -ic DevCA.cer
-iv DevCA.pvk

Configuring IIS to accept client
certificates
The following steps will configure IIS to accept client certificates:

1. Click on the site node in the tree view of IIS Manager.
2. Open the SSL Settings by double-clicking on it.
3. Select any one of these options in Client Certificates:

Accept: IIS will accept a certificate from the client but does
not require one
Require: IIS requires a client certificate (To enable this
option, you must also select Require SSL)

Now you know how to configure in order to accept or require client
certificates in IIS Express. Next, we will see how to use client
certificates in Web API.

Verifying Client Certificates in Web
API
Enabling HTTPS and using the client certificates with SSL and
distributing the signed certificates to the users will secure Web API
and authenticate the client.

Calling GetClientCertificate on the request message returns the
client certificate to Web API. The method returns null if there is no
client certificate. The X509Certificate2 instance will be returned if
there is a client certificate. We can get details about the issuer and
subject from the X509Certificate2 instance object, and it can be
used for authentication and authorization:

X509Certificate2 cert =
Request.GetClientCertificate();
string issuer = cert.Issuer;
string subject = cert.Subject;

Summary
We just saw how to use SSL with ASP.NET Web API and learned
how to implement the basic authentication and forms authentication
using SSL.

You also learned about creating client certificates and configuring IIS
to accept them.

You got to know how to use client certificates in Web API.

In the next chapter, let's integrate the ASP.NET Identity systems with
the ASP.NET Web API. The ASP.NET Identity systems will help you
to implement social logins to your application. It also enables you to
store the user profile information such as dates of birth. ASP.NET
Identity is available in ASP.NET MVC, Web Forms, and Web API
templates.

Chapter 3. Integrating ASP.NET
Identity System with Web API
This chapter practically explains how to integrate ASP.NET Identity
system with ASP.NET Web API. The ASP.NET Identity system is an
upgrade to the ASP.NET Membership and Simple Membership
systems. It has user profile support, OAuth integration and is
available in the ASP.NET templates of Visual Studio 2013/2015.

In this chapter, we will cover the following topics:

Creating an empty Web API application
Installing the ASP.NET Identity NuGet packages
Setting up the ASP.NET Identity 2.1
Defining Web API controllers and methods

Creating an Empty Web API
Application
Let's create an empty Web API to integrate ASP.NET Identity. Follow
the given steps:

1. Create New Project from the Start page in Visual Studio.
2. Select Visual C# Installed Template named Web.
3. Select ASP.NET Web Application in the center pane.
4. Name the project ContactLookupWithAspNetIdentity and click on

OK:

Fig 1 – We have named the ASP.NET Web Application as
ContactLookupWithAspNetIdentity

5. Select the Empty template in the New ASP.NET Project dialog.
6. Check Web API and click OK under Add folders and core

references:

Fig 2 – Select ASP.NET Web API template for Application
"ContactLookupWithAspNetIdentity"

The solution of the empty Web API that is created generates the
following files:

Fig 3 – Solution structure of empty ASP.NET Web API Application
"ContactLookupWithAspNetIdentity"

Installing the ASP.NET Identity
NuGet packages
We have created an Empty Web API Web Application. Now we need
to install the required NuGet packages in order to integrate ASP.NET
Identity into Web API. Let's execute the following statements under
the NuGet package manager console to install the ASP.NET Identity
2.1 package to the created application:

Install-Package Microsoft.AspNet.Identity.Core
Install-Package
Microsoft.AspNet.Identity.EntityFramework
Install-Package Microsoft.AspNet.Identity.OWIN
Install-Package Microsoft.OWIN.Cors
Install-Package Microsoft.AspNet.WebApi.OWIN
Install-Package Microsoft.OWIN.Security.OAuth

We can also install ASP.NET Identity 2.1 using a UI-based Nuget
package manager as given in the following screenshot:

Fig 4 – Installing ASP.NET Identity 2.0 related packages using NuGet Package Manager

Setting up ASP.NET Identity 2.1
We have created an empty Web API and installed the necessary
NuGet packages for ASP.NET Identity and Open Web Interface for
.Net (OWIN). Now let's add the required class files to integrate
ASP.NET Identity into Web API.

ASP.NET Identity
ASP.NET Identity is a framework provided by Microsoft that was
created on top of OWIN middleware to manage user identity and
membership in ASP.NET applications such as Web Forms, MVC,
and Web API. We are going to use the ASP.NET Identity system to
register and manage identity users using the in-built domain model
for identity user called IdentityUser. If you are planning to have
extra properties in your application, then you would need to create a
domain model with extra properties inheriting IdentityUser. Let's
define a custom entity framework class with application-specific
properties for user, such as first name and last name. We also need
to define a db context that will handle the communication with the
database:

1. Let's create a class named ApplicationUser inheriting
IdentityUser in the Models folder:

public class ApplicationUser : IdentityUser
{
 [Required]
 [MaxLength(50)]
 public string FirstName { get; set; }

 [Required]
 [MaxLength(50)]
 public string LastName { get; set; }
}

This extended identity user class contains application-specific
extra properties, such as the FirstName and LastName data,

annotated with the required and maximum length validation
attributes.

2. Now, add a class named ApplicationDbContext to the Models
folder to manage communication with db:

public class ApplicationDbContext :
IdentityDbContext<ApplicationUser>
{
 public ApplicationDbContext()
 : base("DefaultConnection", throwIfV1Schema:
false)
 {
 Configuration.ProxyCreationEnabled = false;
 Configuration.LazyLoadingEnabled = false;
 }

 public static ApplicationDbContext Create()
 {
 return new ApplicationDbContext();
 }
}

We just created an ApplicationDbContext class file inheriting
IdentityDbContext that will help to manage the identity-specific
tables in SQL Server. As you can see, we are passing the
connection string name as a parameter to base constructor so
that it can be used to identify the respective server and
database names.

3. Let's now add the connection string to the web.config file that
will point to the database, which will be created using code first
approach:

<connectionStrings>
 <add name="DefaultConnection"
connectionString="
(LocalDb)\v11.0;AttachDbFilename=|DataDirector
y|\AspNetIdentity.mdf;Initial
Catalog=AspNetIdentity;Integrated
Security=True"
providerName="System.Data.SqlClient" />
</connectionStrings>

We added the required connection string. Now, we need to
enable the entity framework code first migration that will
generate the code in order to update the database schema from
the domain model code.

4. To add the NuGet package for migration, execute the following
commands in the NuGet Package Manager Console:

enable-migrations
add-migration AspNetDbCreate
update-database

The enable-migrations command creates the Migrations
folder in the ContactLookupWithAspNetIdentity project and
generates a file named Configuration. The Seed method
adds the basic data to db that is required to run or test the
application.
The add-migration AspNetDbCreate command generates the
<timestamp>_AspNetDbCreate.cs code in the Migrations
folder to create database. If you notice, the file also
contains the code for the extended application-specific data
properties in the ApplicationUser class in method Up.
The update-database command executes the code in the Up
method and the code in the Seed method in the
<timestamp>_AspNetDbCreate.cs configuration file.

The following image shows the solution structure after adding the
required files and enabling migration:

Fig 5 – Solution structure of "ContactLookupWithAspNetIdentity" with Db Migration
configuration file

1. Add the UserManager class to manage ApplicationUser
instances. To do this, let's create a file named
IdentityConfig.cs in App_Start as a standard, and add the
following code for the UserManager class to it:

public class ApplicationUserManager :
UserManager<ApplicationUser>
{
 public
ApplicationUserManager(IUserStore<ApplicationU
ser> store) : base(store)
 {
 }

 public static ApplicationUserManager
Create(IdentityFactoryOptions<ApplicationUserM
anager> options, IOWINContext context)
 {
 var appDbContext =
context.Get<ApplicationDbContext>();
 var appUserManager = new
ApplicationUserManager(new
UserStore<ApplicationUser>(appDbContext));

 return appUserManager;

 }
}

We can also add code in the create method of the
ApplicationUserManager class to configure validation logic for
username and password, implement two-factor authentication
providers for e-mail and SMS, and enable Role-based authorization
for Web API.

The following code adds the rule to validate user profiles. As per the
code, the usernames are restricted to accept only alphanumeric
usernames (the usernames should start with alphabets) and the e-
mail address should be valid and mandatory:

manager.UserValidator = new
UserValidator<ApplicationUser>(manager)
{
 AllowOnlyAlphanumericUserNames = true,
 RequireUniqueEmail = true
};

The following code adds the rule to validate passwords to restrict the
password's minimum and maximum length and to consist of at least
one special character, a digit, and at least one upper or lower case
letter:

manager.PasswordValidator = new PasswordValidator
{
 RequiredLength = 6,
 RequireNonLetterOrDigit = true,
 RequireDigit = true,
 RequireLowercase = true,
 RequireUppercase = true,
};

The static Create method in the ApplicationUserManager class will be
registered in Startup.Auth.cs as a callback method that will be
invoked in order to create an instance of ApplicationUserManager.
This instance will be stored in OWINContext and is available by calling
the context.Get method:

Add the OWIN Startup class with the following code to the App_Start
folder:

public partial class Startup
{

 public void Configuration(IAppBuilder app)
 {
 HttpConfiguration httpConfig = new
HttpConfiguration();

 ConfigureOAuthTokenGeneration(app);

 ConfigureWebApi(httpConfig);

app.UseCors(Microsoft.OWIN.Cors.CorsOptions.AllowA
ll);

 app.UseWebApi(httpConfig);

 }

 private void
ConfigureOAuthTokenGeneration(IAppBuilder app)
 {

app.CreatePerOWINContext(ApplicationDbContext.Crea
te);

app.CreatePerOWINContext<ApplicationUserManager>
(ApplicationUserManager.Create);
 }

 private void ConfigureWebApi(HttpConfiguration
config)
 {
 config.MapHttpAttributeRoutes();

 var jsonFormatter =
config.Formatters.OfType<JsonMediaTypeFormatter>
().First();

jsonFormatter.SerializerSettings.ContractResolver
= new CamelCasePropertyNamesContractResolver();

 }
}

This Startup class provides you with the ability to configure the
authorization information and the Web API HTTP, set up the
accessibility of CORS, JSON type formatter, and so on.

The application user manager instance is made available in the
account controller by injecting to the constructor or from OWINContext
in the Request object. The instance of application user manager
provides methods to get identity the user information, change the
password, add external login information for the identity user,
remove local or external login of an identity user, register a user, and
add the login information.

Defining Web API Controllers
and methods
So far, we created an empty ASP.NET Web API application. We
installed the necessary NuGet packages for ASP.NET Identity and
OWIN integration. We also added the code for identity user and db
context, and enabled the db migration for the entity framework code
first migration. Now let's add the required controllers and methods to
manage user accounts in application identity system.

Create a controller named AccountsController and add the following
code:

namespace
ContactLookupWithAspNetIdentity.Controllers
{
 [RoutePrefix("api/accounts")]
 public class AccountsController :
ApiController
 {
 public ApplicationUserManager UserManager
 {
 get
 {
 return
Request.GetOWINContext().GetUserManager<Applicatio
nUserManager>();
 }
 }

 [Route("user/{id:guid}")]
 public async Task<IHttpActionResult>
GetUserById (string Id)
 {
 var user = await
UserManager.FindByIdAsync(Id);
 if (user != null)
 {
 return Json(user);
 }

 return NotFound();
 }

 [Route("user/{username}")]
 public async Task<IHttpActionResult>
GetUserByName(string username)
 {
 var user = await
UserManager.FindByNameAsync(username);

 if (user != null)
 {
 return Json(user);
 }
 return NotFound();

 }

[HttpPost]
 [Route("Register")]
 public async Task<IHttpActionResult>
Register([FromBody] UserViewModel userVM)
 {
 var user = new ApplicationUser() {
 UserName = userVM.UserName,
 Email = userVM.Email,
 FirstName = userVM.FirstName,
 LastName = userVM.LastName
 };

 IdentityResult result = await
UserManager.CreateAsync(user, "password@1");

 if (!result.Succeeded)
 {
 return InternalServerError();
 }

 return Ok();
 }
 }
}

There are three methods in AccountsController namely, GetUserById,
GetUserByName, and GetRegister. Note that the Register method is

implemented as HttpPost to accept the user instance from POST
body and this identity user is inserted in the database. The
GetUserById and GetUserByName methods will return user information
that matches with the respective ID or name.

Testing the application
We just created the necessary controllers and methods in order to
manage identity users for an application such as ContactLookup.
Now, let's test AccountsController to verify that the implemented
method to insert an identity user and get the identity user based on
its ID or name works properly.

Let's first invoke the Register method using the Fiddler tool as given
in the following screenshot:

Fig 6 – POST user instance to ASP.NET Web API Register method in Accounts controller

As you can see, we posted user instance to the Web API Register
method using the POST action via Fiddler:

Fig 7 – 200 OK response indicating user has been created

The Web API returned a response with HTTP status code 200 OK.
This means that the new identity user has been created and inserted
into the identity database, as shown in the following screenshot:

Fig 8 – Registered identity user is added to the database

Now, let's try to get the inserted user details by passing the user ID
(a GUID) to the Web API action method, as shown in the following
screenshot:

Fig 9 – Applying GET action to the User method passing user ID

As you can see, we applied the GET action to the URL appending the
respective GUID of the identity user inserted and we received the
user details in the XML/JSON format of the found matching user.

Now, let's try to get the inserted user details by passing the
username to the Web API action method, as shown in the following
screenshot:

Fig 10 – Applying GET action to the User method passing username

Similarly, we have appended the username of the identity user to the
URL by applying the GET method. The response contains the
matching user details in the XML/JSON format.

Now, the Web API is ready with the ASP.NET Identity system
integrated. So, it will be easy for us to manage the identity users
using the built-in functionalities provided by the ASP.NET Identity
system. Next, you can add LookupController with the necessary
methods to return the details of the contacts.

Summary
That was easy, wasn't it? We just integrated APS.NET Identity with
Web API in order to manage the identity user and membership.

You learned the step by step creation of an empty ASP.NET Web
API project that is used to integrate ASP.NET Identity. We then
installed the necessary ASP.NET Identity NuGet packages as a part
of the integration process.

You also learned how to define controllers and methods in order to
manage the identity user and membership for the application.

Finally, you learned about testing the ASP.NET Identity integration
with an empty Web API created. Now, we have the necessary
controllers and methods to manage application user for
ContactLookup. Next, you can create other controllers that are
required to enable search on the available contacts for the
ContactLookup service.

You learned the ASP.NET Identity integration to Web API in this
chapter. In the next chapter, you will secure Web API using OAuth2.

Let's get those security walls up!

Chapter 4. Securing Web API
Using OAuth2
This chapter explains how to secure a web API using OAuth2 to
authenticate against a membership database using OWIN
middleware. You will be able to use local logins to send
authenticated requests using OAuth2.

In this chapter, we will cover the following topics:

Host OWIN in IIS and add Web API to the OWIN pipeline
Individual User Account Login authentication flow
Send an unauthorized request
Get an access token
Send an authenticated request

Hosting OWIN in IIS and adding
Web API to the OWIN pipeline
Let's create an empty Web API template to integrate ASP.NET
Identity. Follow the given steps:

1. Create New Project from the Start page in Visual Studio.
2. Select Visual C# Installed Template named Web.
3. Select ASP.NET Web Application in the center pane.
4. Name the project ContactLookupOwin and click OK:

Fig 1 – We have named the ASP.NET Web Application as "ContactLookupOwin"

5. Select the Empty template in the New ASP.NET Project dialog
and click OK:

Fig 2 – Select Empty template for Application "ContactLookupOwin"

6. Install NuGet packages for the OWIN server that enables
OWIN-based applications to run on IIS using the ASP.NET
request pipeline:

Fig 3 – Installed NuGet package "Microsoft.Owin.Host.SystemWeb"

7. Right-click on Project and select Add New Item in the
ContactLookupOwin project. Then, select the OWIN startup class
in the center pane and name the class file OwinStartup.cs:

Fig 4 – Added OWIN startup class file named "OwinStartup.cs"

8. Replace the Configuration method in the OwinStartup class with
the following code:

public void Configuration(IAppBuilder app)
{
 app.Run(context =>
 {
 context.Response.ContentType =
"text/plain";
 return
context.Response.WriteAsync("Owin Startup.");
 });
}

This code configures the content type for the response and writes
the response body. This happens as the middleware is invoked by
the OWIN pipeline when the HTTP request is received by the server.

Run the application by pressing F5 and you will see the following
output in a browser:

Fig 5 – Response with the injected content "Owin Startup."

Follow the given steps to add Web API to the OWIN pipeline:

1. Install the NuGet package
Microsoft.AspNet.WebApi.OwinSelfHost by running the following
command in the package manager console:

Install-Package
Microsoft.AspNet.WebApi.OwinSelfHost

2. This package enables the application to host ASP.NET Web API
in our process using the OWIN HttpListener server.

3. Modify the Configuration method in Owin Startup class as given
in the following code:

public void Configuration(IAppBuilder app)
{
 HttpConfiguration config = new
HttpConfiguration();
 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate:
"api/{controller}/{id}",
 defaults: new { id =
RouteParameter.Optional }
);

 app.UseWebApi(config);

 app.Run(context =>
 {
 context.Response.ContentType =
"text/plain";
 return
context.Response.WriteAsync("Owin Startup.");
 });
}

4. Add a new class file named ContactsController and inherit from
ApiController as given in the following:

public class ContactsController :
ApiController
 {
 Contact[] contacts = new Contact[]
 {
 new Contact { Id = 1, Name =
"Steve", Email = "steve@gmail.com", Mobile =
"+1(234)35434" },
 new Contact { Id = 2, Name =
"Matt", Email = "matt@gmail.com", Mobile =
"+1(234)5654" },
 new Contact { Id = 3, Name =
"Mark", Email = "mark@gmail.com", Mobile =
"+1(234)56789" }
 };

 public async Task<IHttpActionResult>

GetAllContacts()
 {
 return Json(contacts);
 }

 public class Contact
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public string Email { get; set; }
 public string Mobile { get; set; }
 }
 }

5. Run the application by pressing F5 and go to
http://localhost:55781/api/contacts in a browser, as shown in
the following screenshot:

Fig 6 – Contacts Web API controller returns list of contacts in JSON format

6. Notice that we have successfully added Web API to the OWIN
pipeline and ran it.

Individual User Account
authentication flow
Individual User login in Web API uses OAuth2 to authenticate the
requests using the resource owner password flow. Resource owner
password flow is a grand type that is defined in OAuth2. This
authentication flow enables the client to send username and
password to authorization server. The basic flow of a local login is
given in the following:

1. The end user provides username and password on client
screen.

2. The client sends the username and password to the server that
returns an access token.

3. The server verifies the username and password received and
returns an access token.

4. The client accesses protected resources by sending the access
token along with an HTTP request in the Authorization header.

The following image shows the basic flow of the OAuth2
authentication:

Fig 7 – Resource owner password flow

The following diagram shows the authentication process in ASP.NET
Web API. Authorization server in Web API takes care of
authenticating the requests and issuing tokens. Here, the Resource

servers are Web API controllers. So, to protect Web API controllers
from unauthorized access, we need to decorate those controllers
with [Authorize] attribute. The requests must be authenticated if the
controller or action decorated with [Authorize] attribute. If the request
is not authenticated, then Web API will return 401 (Unauthorized)
error as the authorization is denied:

Fig 8 – The Web API authentication flow

Sending an unauthorized
request
To view the outcome of sending an unauthorized request to a Web
API controller, which is decorated with Authorize attribute, let's
create a Web API by following the given steps:

1. Create New Project from the Start page in Visual Studio.
2. Select Visual C# Installed Template named Web.
3. Select ASP.NET Web Application in the center pane.
4. Name the project WebAPIWithAuthorize and click OK:

Fig 9 – We have named the ASP.NET Web Application as "WebAPIWithAuthorize"

5. Select the Web API template in the New ASP.NET Project
dialog. This will select Web API and MVC by default under Add
folders and core references.

6. Click OK to create the application, leaving Authentication as
Individual User Accounts by default:

Fig 10 – We have selected Web API

The created Web API project contains an MVC controller named
HomeController and two Web API controllers namely,
AccountController and ValuesController. AccountController deals
with user account operations, such as registration, log in, log out,
password changes, and so on. ValuesController is a Web API
controller with some basic operations, such as illustrations. You will
notice that this controller is decorated with the [Authorize] attribute.
So only authenticated requests can access this controller:

[Authorize]
public class ValuesController : ApiController
{
 ...
}

Let's run the application and browse the URL
http://localhost:61486/api/Values/. You will get the following

authorization error:

Fig 11 – Unauthorized access error occurred

I also captured the request and response for this operation using
Fiddler for you, as follows:

GET http://localhost:61486/api/Values HTTP/1.1
Host: localhost:61486

The response that I received is given in the following:

HTTP/1.1 401 Unauthorized
Cache-Control: no-cache
Pragma: no-cache
Content-Type: application/json; charset=utf-8
Expires: -1
Server: Microsoft-IIS/8.0
X-AspNet-Version: 4.0.30319
WWW-Authenticate: Bearer
X-Powered-By: ASP.NET
Date: Sun, 09 Aug 2015 09:14:21 GMT
Content-Length: 61

{"Message":"Authorization has been denied for this
request."}

As you can see in the message that was received in response body,
the request has been denied as it was not authenticated and the
response returned 401 HTTP status code. This happens because
the Authorization header is missing in the request since there is no
bearer token.

Get an access token
To send an authenticated request to ValuesController, we need to
pass an access token in the Authorization header. How do we get
this access token? To get this access token, we need to log in the
application.

Let's first register a user by posting an instance of the user to the
Web API Register action method in the Account controller, as
follows:

Fig 12 – POSTing an instance of User to Web API

Now, we have a registered user with the username steve@jobs.com
and password Password@1. Let's send form with URL encoded data in
the request body to the token endpoint, as follows:

{
 "grant_type": "password",
 "username": "steve@jobs.com",
 "Password": "Password@1"
}

Let's send this instance to the Token endpoint using Fiddler as given
in the following:

Fig 13 – POSTing an instance of User with the grant type to Token endpoint

We will receive a response with the token in the Set-Cookie header,
as shown in the following screenshot:

Fig 14 – Response with Token in the Set-Cookie header

You can also send this data using the AJAX post request or C#. To
demonstrate how to get the token using C#, we introduced an action
named GetToken in HomeController and a view for the same. The C#
code for GetToken is as follows:

public ActionResult GetToken()
{
 var body = new List<KeyValuePair<string,
string>>

 {
 new KeyValuePair<string, string>(
"grant_type", "password"),
 new KeyValuePair<string, string>(
"username", "test@test.com"),
 new KeyValuePair<string, string> (
"Password", "Sample@1")
 };
 var content = new FormUrlEncodedContent(body);

 using (var client = new HttpClient())
 {
 var response =
client.PostAsync("http://localhost:61486/Token",
content).Result;
 var result =
response.Content.ReadAsStringAsync().Result;

 ViewBag.token =
JsonConvert.DeserializeObject<Dictionary<string,
string>>(result)["access_token"];
 }
 return View();
}

We construct the body of request with the username and password
along with grant type. Then, we post the content to the URL
http://localhost:61486/Token/. Finally, we deserialize the response
content and assign the access token to the ViewBag named token.
In the GetToken view, we print the access token assigned to view
bag, as given in the following screenshot:

Fig 15 – The retrieved access token printed on the view

Send an authenticated request
In the previous section, we achieved how to retrieve the access
token from the server by passing username and password. Now, with
the help of the access token that is received, let's send the
authenticated request. The authenticated request will have an
Authorization header in the request. We send the request via Fiddler.
The request and response is given in the following screenshot:

Fig 16 – Sending Authorized request with bearer token

We can also send a Bearer token in the header using HttpClient in
C# code, as follows:

using (var client = new HttpClient())
{
 var token = "access_token";

client.DefaultRequestHeaders.Add("Authorization",
String.Concat("Bearer ", token));
 var response =
client.GetAsync("http://localhost:61486/api/Values
").Result;
 var values =
response.Content.ReadAsStringAsync().Result;
}

Tip
Note: It is always advisable to set up SSL for Web API that
facilitates this type of authentication mechanism.

Summary
Hurray! We just secured our Web API using the token-based
authentication.

In this chapter, you learned about hosting OWIN in IIS and adding
Web API to the OWIN pipeline. You also learned and understood the
flow of Local Login Authentication.

We did a walkthrough of how to send an unauthorized request and
understood its impact.

Then, we sent the username and password to get an access token
for further access of the resources that require an authenticated
request.

Finally, you saw how to send the bearer token in the Authorization
header of the request and access the protected resources.

In the next chapter, let's secure Web API by enabling the basic
authentication using authentication filters.

Let's step up our security to the next level!

Chapter 5. Enabling Basic
Authentication using
Authentication Filter in Web API
This chapter will show how to set an authentication scheme for
individual controllers or actions using an Authentication filter that
implements the HTTP Basic Authentication scheme and also discuss
the advantages and disadvantages of using Basic Authentication.

In this chapter, we will learn the following topics:

Basic authentication with IIS
Basic authentication with custom membership
Basic authentication using an authentication filter
Setting an authentication filter
Implementing a Web API authentication filter
Setting an error result
Combining authentication filters with host-level authentication

Basic authentication with IIS
Internet Information Services(IIS) enables authenticating the user
based on their Windows credentials. So it is necessary that the user
must have a domain server account. Basic authentication in IIS is
built to authenticate using the Windows credentials.

The following steps will enable basic authentication using IIS:

1. Open your ASP.NET Application from the Start page in Visual
Studio.

2. Open the Web.config file.
3. Set authentication mode to Windows in the Web.config file:

<system.web>
 <authentication mode="Windows" />
</system.web>

4. Open IIS Manager.
5. Go to Features View.
6. Select Authentication in IIS Manger:

Fig 1 – Select authentication in features view

7. Disable Anonymous Authentication and enable Basic
Authentication:

Fig 2 – Right-click and enable basic authentication

Note
If you don't find Basic Authentication under Authentication, go
to Programs and Features, turn on or off Windows
Components, and enable Basic Authentication under IIS |
World Wide Web Services | Security.

Basic authentication with
custom membership
We just saw how to enable basic authentication with IIS. However, if
the website is a publically available website, it is not possible to
authenticate the user using Windows credentials. In such cases, the
website should authenticate using the ASP.NET membership
provider. In order to achieve this, we need to implement a custom
membership with basic authentication.

Custom membership with basic authentication can be implemented
using an HTTP module as given in the following:

public class BasicAuthHttpModule : IHttpModule
{
 //...
}

We need to create two methods and hook them to the
AuthenticateRequest and EndRequest events in the Init method as
given in the following code:

public void Init(HttpApplication context)
{
 context.AuthenticateRequest +=

OnApplicationAuthenticateRequest;
 context.EndRequest +=
OnApplicationEndRequest;
}

As you can see OnApplicationAuthenticateRequest is added or
registered to the AuthenticateRequest event of HttpApplication and
OnApplicationEndRequest is added or registered to the EndRequest
event of HttpApplication.

The OnApplicationAuthenticateRequest method should check the
Authorization request in the request header as follows:

var request = HttpContext.Current.Request;
var authHeader = request.Headers["Authorization"];
if (authHeader != null)
{
 //...
}

If the Authorization header contains information for Basic
Authentication, then the username and password should be
extracted from the credentials and validated using the ASP.NET
membership provider that is injected into the HTTP module, as
follows:

var encoding = Encoding.GetEncoding("iso-8859-1");
var credentials =
encoding.GetString(Convert.FromBase64String(authHe
ader.Parameter));
int separator = credentials.IndexOf(':');
string name = credentials.Substring(0, separator);
string password = credentials.Substring(separator
+ 1);

If the obtained username and password are valid, then it creates
IPrincipal and assigns it to the current user of the HTTP context as
shown in the following code:

// If credential is valid, then build the
principal
var identity = new GenericIdentity(name);
Thread.CurrentPrincipal = new
GenericPrincipal(identity, null));
if (HttpContext.Current != null)
{
 HttpContext.Current.User = principal;
}

Add the following code in the web.config file under the
system.webServer section to enable the HTTP module:

<modules>
 <add name="BasicAuthHttpModule"

type="ContactLookup.Modules.BasicAuthHttpModule,
AssemblyName"/>
</modules>

Replace AssemblyName with the actual name of the assembly,
excluding the dll extension. Also, we need to disable other
authentications, such as Form and Windows authentication.

Basic authentication using an
authentication filter
With the release of ASP.NET Web API 2.0, it is best practice to use
an authentication filter for basic authentication rather than using an
HTTP module. Follow the given steps to implement basic
authentication using an authentication filter:

1. Create New Project from the Start page in Visual Studio.
2. Select Visual C# Installed Template named Web.
3. Select ASP.NET Web Application in the center pane.
4. Name the project Chapter05.BasicAuthentication and click OK:

Fig 3 – We have named the ASP.NET Web Application as
"Chapter05.BasicAuthentication"

5. Select the MVC template in the New ASP.NET Project dialog.

Fig 4 – Select MVC template and check Web API in add folders and core references

6. Check Web API and click OK under Add folders and core
references and leave Authentication to Individual User
Accounts:

7. Add a filter named BasicAuthorizeAttribute, inheriting
AuthorizeAttribute and replace the code with the one given in
the following:

namespace
Chapter05.BasicAuthentication.Filters
{
 public class BasicAuthorizeAttribute :
System.Web.Http.AuthorizeAttribute
 {
 private const string
BasicAuthResponseHeader = "WWW-Authenticate";
 private const string
BasicAuthResponseHeaderValue = "Basic";

 public override void

OnAuthorization(HttpActionContext
actionContext)
 {
 try
 {
 var authValue =
actionContext.Request.Headers.Authorization;

 if (authValue != null &&
!String.IsNullOrWhiteSpace(authValue.Parameter
) && authValue.Scheme ==
BasicAuthResponseHeaderValue)
 {
 var credentials =
ParseAuthorizationHeader(authValue.Parameter);

 if (credentials != null)
 {
 // Check if the
username and passowrd in credentials are valid
against the ASP.NET membership.
 // If valid, the set
the current principal in the request context
 var identity = new
GenericIdentity(credentials.Username);

actionContext.RequestContext.Principal = new
GenericPrincipal(identity, null);
 }
 }
 else
 {
 actionContext.Response =
GetUnauthorizedResponse();
 return;
 }
 }
 catch (Exception)
 {
 actionContext.Response =
GetUnauthorizedResponse();
 return;

 }
 }

 private Credentials
ParseAuthorizationHeader(string authHeader)

 {
 var credentials =
Encoding.ASCII.GetString(Convert.FromBase64Str
ing(authHeader)).Split(new[] { ':' });

 if (credentials.Length != 2 ||
string.IsNullOrEmpty(credentials[0]) ||
string.IsNullOrEmpty(credentials[1]))
 return null;

 return new Credentials() {
Username = credentials[0], Password =
credentials[1], };
 }

 private HttpResponseMessage
GetUnauthorizedResponse()
 {
 var response = new
HttpResponseMessage(HttpStatusCode.Unauthorize
d);

response.Headers.Add(BasicAuthResponseHeader,
BasicAuthResponseHeaderValue);
 return response;
 }
 }
 public class Credentials
 {
 public string Username { get; set; }
 public string Password { get; set; }
 }
}

8. As you can see in the code, the OnAuthorization method checks
the Authorization in request header. If the Authroization
header is available along with the basic authentication
information, then it tries to extract the username and password
from the Base64 encoded token value. The user credentials that
are extracted will be validated against the ASP.NET
membership for authentication.

9. Add a Web API controller named ContactsController and
replace the code with the following code:

namespace Chapter05.BasicAuthentication.Api
{
 public class ContactsController :
ApiController
 {
 IEnumerable<Contact> contacts = new
List<Contact>
 {
 new Contact { Id = 1, Name =
"Steve", Email = "steve@gmail.com", Mobile =
"+1(234)35434" },
 new Contact { Id = 2, Name =
"Matt", Email = "matt@gmail.com", Mobile =
"+1(234)5654" },
 new Contact { Id = 3, Name =
"Mark", Email = "mark@gmail.com", Mobile =
"+1(234)56789" }
 };

 [BasicAuthorize]
 // GET: api/Contacts
 public IEnumerable<Contact> Get()
 {
 return contacts;
 }
 }
}

The BasicAuthorize attribute can also be configured at
controller or application level. This can be achieved by
decorating the controller with this attribute or configuring it in a
global.asax file to enable it in application.

10. The Get action in ContactsController is decorated with the
BasicAuthorize attribute, which is a custom attribute that we
created for basic authentication. So only a request with valid
basic authentication details in the header can access the GET
action in the API controller.

Setting an authentication filter
The http://aspnet.codeplex.com provides the sample code for the
authentication filter named IdentityBasicAuthenticationAttribute
that implements HTTP Basic Access Authentication scheme (RFC
2617). We can make use of this [IdentityBasicAuthentication]
authentication filter and apply it at the action level, controller level, or
global level that can be applied to all the controllers and actions.

Action-level authentication filter
To apply a basic authentication filter at action level, we need to
decorate the respective actions with the
[IdentityBasicAuthentication] filter as given in the following:

// Require authenticated requests.
public class ContactsController : ApiController
{
 public HttpResponseMessage GetContact() { . .
. }

 // Enable Basic authentication for this action
 [IdentityBasicAuthentication]
 public HttpResponseMessage PostContact(Contact
contact) { . . . }
}

Controller-level authentication filter
If we decorate the basic authentication filter at controller level, then
accessing all the actions inside that controller need an authenticated
request. Applying the basic authentication filter at controller level is
given in the following:

// Enable Basic authentication for this controller
[IdentityBasicAuthentication]
// Require authenticated requests.
[Authorize]

http://aspnet.codeplex.com/

public class ContactsController : ApiController
{
 public HttpResponseMessage GetContact() { . .
. }
 public HttpResponseMessage PostContact(Contact
contact) { . . . }
}

Global-level authentication filter
We can apply any filter globally in Web API by adding the filter to the
collection of filters in the webApiConfig class file as given in the
following. This code adds the IdentityBasicAuthentication filter to
the collection of filters, as follows:

public static class WebApiConfig
{
 public static void Register(HttpConfiguration
config)
 {
 config.Filters.Add(new
IdentityBasicAuthenticationAttribute());
 //...
 }
}

Implementing a Web API
authentication filter
An authentication filter in Web API must implement the
System.Web.Http.Filters.IAuthenticationFilter interface. The
interface contains a AllowMultiple property of Boolean type that
indicates that more than one instance of the attribute can be
specified for a single program element. It has two methods, namely
AuthenticateAsync to validate credentials in the request and
ChallengeAsync to attach an authentication challenge to the
response, if required.

As the filter can be decorated to the controllers and actions, we also
need to inherit from System.Attribute.

Before executing an action in a Web API controller, it first builds a list
of authentication filters that are configured globally, at controller level
and that particular action level. Then it calls the AuthenticateAsync
method in each filter that is found in the list. The AuthenticateAsync
method in each filter validates the credentials in the request and if
any succeed with credential validation, then it creates IPrincipal and
attaches it to the request. Code snippet of the AuthenticateAsync
method from Basic Authentication sample in CodePlex is given in the
following:

public async Task
AuthenticateAsync(HttpAuthenticationContext
context, CancellationToken cancellationToken)
{
 // 1. Look for credentials in the request.
 HttpRequestMessage request = context.Request;
 AuthenticationHeaderValue authorization =
request.Headers.Authorization;

 // 2. If there are no credentials, do nothing.
 if (authorization == null)
 {
 return;

 }

 // 3. If there are credentials but the filter
does not recognize the
 // authentication scheme, do nothing.
 if (authorization.Scheme != "Basic")
 {
 return;
 }

 // 4. If there are credentials that the filter
understands, try to validate them.
 // 5. If the credentials are bad, set the
error result.
 if
(String.IsNullOrEmpty(authorization.Parameter))
 {
 context.ErrorResult = new
AuthenticationFailureResult("Missing credentials",
request);
 return;
 }

 Tuple<string, string> userNameAndPasword =
ExtractUserNameAndPassword(authorization.Parameter
);
 if (userNameAndPasword == null)
 {
 context.ErrorResult = new
AuthenticationFailureResult("Invalid credentials",
request);
 }

 string userName = userNameAndPasword.Item1;
 string password = userNameAndPasword.Item2;

 IPrincipal principal = await
AuthenticateAsync(userName, password,
cancellationToken);
 if (principal == null)
 {
 context.ErrorResult = new
AuthenticationFailureResult("Invalid username or
password", request);
 }

 // 6. If the credentials are valid, set
principal.

 else
 {
 context.Principal = principal;
 }

}

Once IPrincipal is successfully created, Web API executes the
ChallengeAsync method in available filters in the list to add challenge
to the response. Code snippet of the ChallengeAsync method is
shown in the following:

public Task
ChallengeAsync(HttpAuthenticationChallengeContext
context, CancellationToken cancellationToken)
{
 var challenge = new
AuthenticationHeaderValue("Basic");
 context.Result = new
AddChallengeOnUnauthorizedResult(challenge,
context.Result);
 return Task.FromResult(0);
}

Setting an error result
If the credentials are found to be invalid by any of the filters in the
list, then it sets ErrorResult in context parameter of the
AuthenticateAsync method. Instance of AuthenticationFailureResult
is assigned to context with appropriate error message as follows in
the AuthenticateAsync method of the filter:

 // If the sufficient information for
credentials not supplied.
 if
(String.IsNullOrEmpty(authorization.Parameter))
 {
 context.ErrorResult = new
AuthenticationFailureResult("Missing credentials",
request);
 return;
 }

 Tuple<string, string> userNameAndPasword =
ExtractUserNameAndPassword(authorization.Parameter
);
 string userName = userNameAndPasword.Item1;
 string password = userNameAndPasword.Item2;

 IPrincipal principal = await
AuthenticateAsync(userName, password,
cancellationToken);

 // if the provided username and password is
not valid
 if (principal == null)
 {
 context.ErrorResult = new
AuthenticationFailureResult("Invalid username or
password", request);
 }

Combining authentication
filters with host-level
authentication
Authentication at host level will be carried out by the host, such as
IIS, itself even before the request reaches the Web API framework.
We can disable the host-level authentication in Web API by calling
the config.SuppressHostPrincipal() method in the Web API
configuration as given in the following:

public static class WebApiConfig
{
 public static void Register(HttpConfiguration
config)
 {
 config.SuppressHostPrincipal();
 }
}

It is best practice to disable the host-level authentication in Web API
and enable it for the rest of the application. Once the host-level
authentication is disabled, we can apply the authentication filter that
was created in the earlier section at application level, controller level,
or action level for Web API.

Summary
Bravo! We just secured our Web API using basic authentication.

You learned how to configure basic authentication in IIS and
implemented basic authentication using custom membership.

We have seen how to set an authentication filter at different levels
and did a step-by-step walkthrough of how to implement
Authentication Filter in ASP.NET Web API.

You also learned how to set the error result if authentication failed.

Finally, we saw how to suppress host-level authentication in
ASP.NET Web API.

In the next chapter, let's secure a Web API using Forms and
Windows authentication.

Chapter 6. Securing a Web API
using Forms and Windows
Authentication
This chapter will cover how to secure Web API using Forms and
Windows authentication. You will also learn about the advantages
and disadvantages of using Forms and Windows authentication in
Web API.

In this chapter, we will cover the following topics:

Working of Forms authentication
Implementing Forms authentication in Web API
Discussing Integrated Windows Authentication
Discussing the advantages and disadvantages of using the
Integrated Windows Authentication mechanism
Configuring Windows authentication
Discussing the difference between Basic authentication and
Windows authentication
Enabling Windows authentication in Katana

Working of Forms
authentication
The user credentials will be submitted to the server using HTML
forms in Forms authentication. This can be used in ASP.NET Web
API only if it is consumed from web application. Forms authentication
is built under ASP.NET and uses the ASP.NET membership provider
to manage user accounts. Forms authentication requires browser
client to pass the user credentials to the server. It sends the user
credentials in the request and uses HTTP cookies for authentication.

Let's list the step-by-step process of Forms authentication, as
follows:

1. Browser tries to access a restricted action that requires an
authenticated request.

2. If the browser sends an unauthenticated request, then the
server will respond with HTTP status 302 Found and triggers the
URL redirection to login page.

3. To send the authenticated request, a user enters the username
and password, and submits the form.

4. If the credentials are valid, the server responds with HTTP 302
status code that initiates the browser to redirect the page to
original requested URL with the authentication cookie in the
response.

5. Now, any request from the browser includes the authentication
cookie and the server will grant access to any restricted
resource.

Implementing Forms
authentication in Web API
To send the credentials to the server, we need an HTML form to
submit. Let's use the HTML form or HTML view in the ASP.NET MVC
application.

Steps to implement Forms authentication in an ASP.NET MVC
application are as follows:

1. Create New Project from the Start page in Visual Studio.
2. Select Visual C# Installed Template named Web.
3. Choose ASP.NET Web Application in the center panel.
4. Name the project as Chapter06.FormsAuthentication and click

OK:

Fig 1 – We have named the ASP.NET Web Application
"Chapter06.FormsAuthentication"

5. Select the MVC template in the New ASP.NET Project dialog.

6. Tick Web API under Add folders and core references and
press OK, leaving the Authentication to Individual User
Accounts:

Fig 2 – Select MVC template and check Web API in add folders and core references

7. Forms authentication configuration can be included in the
web.config file, as follows:

<system.web>
 <authentication mode="Forms">
 <forms loginUrl="~/Account/LogOn"
timeout="30" />
 </authentication>
</system.web>

In this configuration, we set the authentication mode to "Forms"
and also configured loginurl so that the application redirects to
the configured page to log in if the request is not authenticated.

8. In the Models folder, add a class named Contact.cs with the
following code:

namespace Chapter06.FormsAuthentication.Models
{
 public class Contact
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public string Email { get; set; }
 public string Mobile { get; set; }
 }
}

9. Add a Web API controller named ContactsController with the
following code snippet:

namespace Chapter06.FormsAuthentication.Api
{
 public class ContactsController :
ApiController
 {
 IEnumerable<Contact> contacts = new
List<Contact>
 {
 new Contact { Id = 1, Name =
"Steve", Email = "steve@gmail.com", Mobile =
"+1(234)35434" },
 new Contact { Id = 2, Name =
"Matt", Email = "matt@gmail.com", Mobile =
"+1(234)5654" },
 new Contact { Id = 3, Name =
"Mark", Email = "mark@gmail.com", Mobile =
"+1(234)56789" }
 };

 [Authorize]
 // GET: api/Contacts
 public IEnumerable<Contact> Get()
 {
 return contacts;
 }
 }
}

As you can see in the preceding code, we have decorated the Get()
action in ContactsController with the [Authorize] attribute. So this
Web API action can only be accessed by an authenticated request.
An unauthenticated request for this action will make the browser
redirect to the login page and enable the user to either register or log
in:

Fig 3 – Redirected Login Page for Authentication

Once logged in, any request that tries to access this action will be
allowed as it is authenticated. This is because the browser
automatically sends the session cookie along with the request and
Forms authentication uses this cookie to authenticate the request:

Fig 4 – Authentication Cookie shown in developer tool

Note
It is very important to secure the website using SSL as Forms
authentication sends unencrypted credentials. Refer to Chapter
2, Enabling SSL for ASP.NET Web API, to learn how to set up
SSL for your application.

What is Integrated Windows
Authentication?
Integrated Windows Authentication is an authentication mechanism
that is based on SPNEGO, Kerberos, and NTLMSSP protocols. It
deals with automatically authenticating the connection between IIS,
IE, and active directory.

Advantages and disadvantages
of using the Integrated
Windows Authentication
mechanism
First let's see the advantages of Windows authentication. Windows
authentication is built in IIS. It doesn't send the user credentials
along with the request. This authentication mechanism is best suited
for intranet applications.

However, with all these advantages, there are few disadvantages on
Windows authentication mechanism. It requires Kerberos, which
works based on tickets or NTLM, a Microsoft security protocol that
should be supported by client. Client PC must be under an active
directory domain.

Configuring Windows
Authentication
Let's implement Windows authentication to an ASP.NET MVC
application following the given steps:

1. Create New Project from the Start page in Visual Studio.
2. Select Visual C# Installed Template named Web.
3. Choose ASP.NET Web Application in the center panel.
4. Name the project Chapter06.WindowsAuthentication and click

OK:

Fig 5 – We have named the ASP.NET Web Application
"Chapter06.WindowsAuthentication"

5. Change the Authentication mode to Windows
Authentication:

Fig 6 – Select Windows Authentication in Change Authentication window

6. Select the MVC template in the New ASP.NET Project dialog.
7. Tick Web API under Add folders and core references and

click OK:

Fig 7 – Select MVC template and check Web API in add folders and core references

8. Under the Models folder, add a class named Contact.cs with the
following code:

namespace Chapter06.FormsAuthentication.Models
{
 public class Contact
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public string Email { get; set; }
 public string Mobile { get; set; }
 }
}

9. Add a Web API controller named ContactsController with the
following code:

namespace Chapter06.FormsAuthentication.Api
{
 public class ContactsController :
ApiController
 {
 IEnumerable<Contact> contacts = new
List<Contact>
 {
 new Contact { Id = 1, Name =
"Steve", Email = "steve@gmail.com", Mobile =
"+1(234)35434" },
 new Contact { Id = 2, Name =
"Matt", Email = "matt@gmail.com", Mobile =
"+1(234)5654" },
 new Contact { Id = 3, Name =
"Mark", Email = "mark@gmail.com", Mobile =
"+1(234)56789" }
 };

 [Authorize]
 // GET: api/Contacts
 public IEnumerable<Contact> Get()
 {
 return contacts;
 }
 }
}

10. The Get() action in ContactsController is decorated with the
[Authorize] attribute. But in Windows authentication, any
request is considered as authenticated request if the client relies
on the same domain. So no explicit login process is required to
send an authenticated request to call the Get() action.

Note
Note that Windows authentication is configured in the
Web.config file, as follows:

<system.web>
 <authentication mode="Windows" />
</system.web>

Difference between Basic
Authentication and Windows
authentication
Windows authentication authenticates the user by validating the
credentials against the user account in a Windows domain.

Basic authentication verifies the credentials that are provided in a
form against the user account that is stored in a database.

Enabling Windows
authentication in Katana
Katana is a collection of projects to support OWIN with various
Microsoft components for System.Web and System.Net.HttpListener.

We can plug Web API in an OWIN-based application rather than
depending on System.Web file. This can be achieved by installing the
Microsoft.AspNet.WebApi.Owin NuGet package that allows adding
Web API to middleware pipeline.

Follow the steps to create a console application and enable
Windows authentication in Katana:

1. Create New Project from the Start page in Visual Studio.
2. Select Visual C# Installed Template named Windows

Desktop.
3. Select Console Application in the center pane.
4. Name the project as Chapter06.WindowsAuthenticationKatana

and click OK:

Fig 8 – We have named the Console Application
"Chapter06.WindowsAuthenticationKatana"

5. Install NuGet Package named Microsoft.Owin.SelfHost from
NuGet Package Manager:

Fig 9 – Install NuGet Package named Microsoft.Owin.SelfHost

6. Add a Startup class with the following code snippet:
namespace
Chapter06.WindowsAuthenticationKatana
{
 class Startup
 {
 public void Configuration(IAppBuilder
app)
 {
 var listener =

(HttpListener)app.Properties["System.Net.HttpL
istener"];
 listener.AuthenticationSchemes =

AuthenticationSchemes.IntegratedWindowsAuthent
ication;

 app.Run(context =>
 {
 context.Response.ContentType =
"text/plain";
 return
context.Response.WriteAsync("Hello Packt
Readers!");
 });
 }
 }
}

7. Add the following code in the Main function in Program.cs, as
follows:

using (WebApp.Start<Startup>
("http://localhost:8001"))
{
 Console.WriteLine("Press any Key to
quit Web App.");
 Console.ReadKey();
}

8. Now run the application and open http://localhost:8001/ in the
browser, as shown in the following screenshot:

Fig 10 – Open the Web App in a browser

9. If you capture the request using Fiddler, you will notice an
Authorization Negotiate entry in the header of the request.

10. Try calling http://localhost:8001/ in Fiddler and you will get a
401 Unauthorized response with WWW-Authenticate headers,

which indicates that the server attaches the Negotiate protocol
that consumes either Kerberos or NTLM as given in the
following:

HTTP/1.1 401 Unauthorized
Content-Length: 0
Server: Microsoft-HTTPAPI/2.0
WWW-Authenticate: Negotiate
WWW-Authenticate: NTLM
Date: Tue, 13 Oct 2015 15:43:35 GMT
Proxy-Support: Session-Based-Authentication

Summary
Voilà! We just secured our Web API using Forms and Windows
authentication.

In this chapter, you learned how Forms authentication works and
how it is implemented in Web API.

You also learned about configuring Windows authentication and got
to study the advantages and disadvantages of using Windows
authentication.

Then you learned about implementing Windows authentication
mechanism in Katana.

In the next chapter, let's see how to use external authentication
services, such as Facebook and Twitter, to secure Web API.

Chapter 7. Using External
Authentication Services with
ASP.NET Web API
This chapter will help you to understand the need for external
authentication services to enable OAuth/OpenID and social media
authentication.

In this chapter, we will cover the following topics:

Using OWIN external authentication services
Implementing Facebook authentication
Implementing Twitter authentication
Implementing Google authentication
Implementing Microsoft authentication
Discussing authentication

Using OWIN external
authentication services
Using external authentication services for authentication reduces the
development time that is needed to implement internal authentication
mechanisms. Most web users have accounts on social media
websites, such as Facebook and Twitter, and other services, such as
Microsoft and Google. Using external authentication services saves
the time of users to create another account for your web application.

ASP.NET provides built-in support for external authentication
services such as Facebook, Twitter, Microsoft, and Google.

Creating an ASP.NET MVC Application

Let's create an ASP.NET MVC application in order to demonstrate
how to implement external authentication solutions, as follows:

1. Create New Project from the Start page in Visual Studio.
2. Select Visual C# Installed Template named Web.
3. Select ASP.NET Web Application in the center pane.
4. Name the project as Chapter07.ExternalAuthentication and

click OK:

Fig 1 – We have named the ASP.NET Web Application as
"Chapter07.ExternalAuthentication"

5. Select the MVC template in the New ASP.NET Project dialog.
6. Check Web API and click OK under Add folders and core

references for, leaving the Authentication to Individual User
Accounts:

Fig 2 – Select MVC template and check Web API in add folders and core references

7. Add a model class named Contact.cs to the Models folder with
the following code:

namespace
Chapter07.ExternalAuthentication.Models
{
 public class Contact
 {
 public int Id { get; set; }
 public string Name { get; set; }
 public string Email { get; set; }
 public string Mobile { get; set; }
 }
}

8. Add a Web API controller named ContactsController and
replace the code with the following code:

namespace Chapter07.ExternalAuthentication.Api
{

 public class ContactsController :
ApiController
 {
 IEnumerable<Contact> contacts = new
List<Contact>
 {
 new Contact { Id = 1, Name =
"Steve", Email = "steve@gmail.com", Mobile =
"+1(234)35434" },
 new Contact { Id = 2, Name =
"Matt", Email = "matt@gmail.com", Mobile =
"+1(234)5654" },
 new Contact { Id = 3, Name =
"Mark", Email = "mark@gmail.com", Mobile =
"+1(234)56789" }
 };

 [Authorize]
 // GET: api/Contacts
 public IEnumerable<Contact> Get()
 {
 return contacts;
 }
 }
}

We just created an ASP.NET MVC application and added a Web API
controller named ContactsController to supply a list of contact
details. The Get action in ContactsController is decorated with the
[Authorize] attribute and can only be called using an authenticated
request. Now let's add external the authentication solutions one by
one to authenticate the request.

Implementing Facebook
authentication
To apply Facebook authentication services to our application, we first
need to create a developer account in Facebook and then, using the
developer account, we need to create an application on Facebook.
This application will provide us with an app ID and a secret key to
enable Facebook authentication in our application. Follow the given
steps to get the keys from Facebook:

1. Log in to Facebook using your credentials.
2. Navigate to the Facebook developers website

(https://developers.facebook.com/).
3. Click the Register as a Developer menu item under the My

Apps menu:

Fig 3 – Select Register as a Developer from the menu

4. Select Yes to accept the Facebook Platform Policy and
Facebook Privacy Policy and click Register, which would
successfully register you as a Facebook Developer. You can
now add Facebook to your app or website:

https://developers.facebook.com/

Fig 4 – Click Register to register as a Facebook developer

5. Click Website in the Add a New App page:

Fig 5 – Select Website in the Add a New App page

6. Click Skip and Create App ID on the Quick Start for Website
page:

Fig 6 – Navigate to the Skip and Create App ID link

7. Provide Display Name and Namespace. Select Category
under the model popup dialog. Then click the Create App ID
button:

Fig 7 – Navigate to Skip and Create App ID link

8. Confirm the captcha as a security check by entering the text
exactly in the same case, since it is case sensitive, and click
Submit:

Fig 8 – Confirm the captcha for security purposes

9. Now the Dashboard for the created Facebook app will be shown
with the details of the App ID, API Version, and App Secret
key:

Fig 9 – App ID and Secret key is available under dashboard

10. Navigate to Settings and click on Add Platform:

Fig 10 – App ID and Secret key is available under dashboard

11. Click Website under the Select Platform model popup dialog:

Fig 11 – Select website for the platform

12. Enter your website URL in Site URL under the Website panel
that was added. You can also use localhost URL as Site URL
during development:

Fig 12 – Provide your application URL

13. Click the Save Changes button to save the changes made.
14. Copy the App ID and App Secret Key values as you need to

configure your application code. These values will be passed to
the Facebook provider from your website when the user tries to
log in using his Facebook account.

15. Exit the Facebook developer site.
16. Open the ASP.NET MVC application that we created in the

previous section.
17. Open the Startup.Auth.cs class file under the App_Start folder.
18. Update the copied App ID and App Secret Key in the folllowing

code under the ConfigureAuth method:
app.UseFacebookAuthentication(
 appId: "",
 appSecret: "");

19. Now, run the application and try to log in using Facebook by
clicking the Facebook button. Your website will be redirected to
Facebook in order to authenticate the login request:

Fig 13 – Click on Facebook to authenticate the user to access your application

20. Facebook will confirm with the user whether they are fine with
the app that may access the public profile information. Your
public profile includes name, profile picture, age range, gender,
language, country, and other public information:

Fig 14 – Confirm to access your profile information

21. Clicking Okay will redirect you back to the application and you
will be asked to provide your email ID in order to register the

user who has logged in via Facebook, by associating his
Facebook account. The redirect happens as we supplied a
redirect URL for our application:

Fig 15 – Associate your Facebook account by registering your email id

Implementing Twitter
authentication
As we implemented Facebook authentication, we also need to create
a Twitter developer account and need to supply consumer key and
consumer secret value from our application to Twitter for
authentication.

Follow the given steps to get the consumer key and secret value
from the Twitter developer account for your application:

1. Log in to your Twitter account (https://twitter.com/).
2. Navigate to the Twitter developer site (https://dev.twitter.com/).
3. Scroll down to the footer and click Manage Your Apps under

the Tools section.
4. Click the Create New App button in the redirected page:

Fig 16 – Create your Twitter Application

5. Provide your Application Details such as Name, Description,
Website, and Callback URL. Tick agree to the developer
agreement in the Create an application page. The Callback
URL is the URL of our application that Twitter needs to redirect
to after the successful authentication:

https://twitter.com/
https://dev.twitter.com/

Fig 17 – Providing details to create an application

6. Click the Create your Twitter application button.
7. You can find the consumer key and secret values by clicking

manage keys and access tokens under the Application
Settings section on the Details tab of the created application.
Copy consumer key and secret values.

8. Open the Startup.Auth.cs class file under the App_Start folder.
9. Update the copied Consumer Key and Consumer Secret

values in the following code under ConfigureAuth method:
app.UseTwitterAuthentication(
 consumerKey: "",
 consumerSecret: "");

10. Run your application and click on the Twitter button in the
following page to log in using Twitter:

Fig 18 – Click Twitter to authenticate the user

11. Your application will redirect to Twitter for authentication. Click
Sign In to authorize the Twitter app to use your account and
authenticate the access to your application:

Fig 19 – Authorizing your application by clicking sign in

12. You need to provide your email ID to register and associate your
Twitter account:

Fig 20 – Associating Twitter application with your application profile

13. Exit the Twitter site.

Implementing Google
authentication
So far we have seen how to integrate external authentication using
social media websites such as Facebook and Twitter. Now let's see
how to integrate Google authentication. We need to create a project
and a create client ID and secret key in the Google developer
console and this client ID and secret key should be configured in our
application.

Follow the given steps to get the client ID and secret key value from
the Google developer console for your application:

1. Log in to your Google account (https://www.google.com/).
2. Open the Google developer console site

(https://console.developers.google.com/).
3. Click Create Project:

Fig 21 –Creating Project in Google developer console

4. Enter the Project Name and click the Create button:

https://www.google.com/
https://console.developers.google.com/

Fig 22 – Providing the project name and create

5. Click APIs & auth | APIs and enable Google+ API.
6. Click APIs & auth | Credentials and select the OAuth consent

screen tab. Provide the Project Name and Save:

Fig 23 – Providing your email address

7. Select OAuth 2.0 client ID under Add credentials:

Fig 24 – Select API key in the add credentials button dropdown. This screenshot was
taken by September 2015

8. Create client ID by selecting web application as Application
Type and providing authorized JavaScript origins and
redirect URIs:

Fig 25 – Configure authorized application type, JavaScript origins and redirect URIs

9. The client ID and secret key will be shown on a modal popup,
as follows:

Fig 26 – Copy the Client ID and Secret key value

10. Copy Client ID and Secret key.
11. Open the Startup.Auth.cs class file under the App_Start folder.
12. Update the copied Client ID and Secret Key values in the

following code under the ConfigureAuth method:
app.UseGoogleAuthentication(new
GoogleOAuth2AuthenticationOptions()
 {
 ClientId = "",
 ClientSecret = ""
 });

13. Run the web application and log in using Google from the
external authentication service login page.

14. The web application will be redirected to Google for
authentication. Click Allow to authorize the application to
access the user profile and authenticate using your Google
account:

Fig 27 – Provide details to create an application

15. You need to provide your email ID to register and associate your
Google account:

Fig 28 – Associate your Google account by registering your email id

16. Exit the Google site.

Implementing Microsoft
authentication
Microsoft authentication is like utilizing your end users' enterprise
accounts to authenticate them. We need to create an application and
configure redirect URL. Then copy the client ID and secret key from
app settings in the Microsoft developer account and configure them
in our application code.

Follow the given steps to get the client ID and secret key value from
the Microsoft developer portal for your application:

Log to your Microsoft account (https://www.live.com/).

1. Navigate to the Microsoft developer center site
(https://account.live.com/developers/applications/).

2. Provide the Application name and click the I accept button:

Fig 29 – Enable your application to use Microsoft accounts

https://www.live.com/
https://account.live.com/developers/applications/

3. Click on API Settings and configure Redirect URLs:

Fig 30 – Configure redirect URL for your application

4. Click App Settings and copy the Client ID and Client Secret
value:

Fig 31 – Copy Client ID and Secret Key values

5. Open the Startup.Auth.cs class file under the App_Start folder.
6. Update the copied Client ID and Secret Key values in the

following code under ConfigureAuth method:
app.UseMicrosoftAccountAuthentication(
 clientId: "",
 clientSecret: "");

7. Run the web application and log in using Microsoft account from
the external authentication service login page.

8. On clicking the Microsoft button for login, your application will
redirect to Microsoft Live for authentication. Click Yes to
authorize the application and authenticate the user that is using
your Microsoft account:

Fig 32 – Allow your application to access user info from a Microsoft account

9. You need to provide your email ID to register and associate your
Microsoft account:

Fig 33 – Associate your Microsoft account by registering your email

10. Exit the Microsoft site.

Discussing authentication
In the previous sections, we have seen how the external
authentication is carried out. It all starts with registering the user
details that are retrieved from the external authentication providers.
On successful registration of the user's details with our application,
we don't need to store the user details again in our application again.

This time the external authentication providers will not ask the
permission of users in order to enable access to their public profile
information as the user has already given the permission to our
application. So, the external authentication providers will just
authenticate the user and our application will bypass the registration
process for the existing users.

Summary
Voila! We just secured our Web API using the external authentication
mechanisms.

In this chapter, you learned about OWIN external authentication and
how to use it in order to secure our Web API.

You also learned how to register as a developer on external
authentication services such as Facebook, Twitter, Google, and
Microsoft and create an application there to get client ID and secret
key and consumer ID and secret key respectively.

Then you learned how to configure the ID and secret keys that are
copied from external authentication services in our source code in
order to implement the external authentication in our application.

Finally, we ran the application and saw the working of external
authentication in action.

In the next chapter, let's learn how to protect our Web API from
cross-site request forgery attack.

Let's prepare for the attack!

Chapter 8. Avoiding Cross-Site
Request Forgery Attacks in
Web API
This chapter will help you in avoiding Cross-Site Request Forgery
(CSRF) in ASP.NET Web API. Using an API key-based
authentication or a more sophisticated mechanism, such as OAuth,
to avoid CSRF attacks.

In this chapter, we will cover the following topics:

What is a CSRF attack?
Anti-forgery tokens using HTML Form or Razor View
Anti-forgery tokens using AJAX

What is a CSRF attack?
As given in Wikipedia (https://en.wikipedia.org/wiki/Cross-
site_request_forgery/), Cross-site request forgery (CSRF or XSRF),
also known as a one-click attack or session riding, is a type of
malicious exploit of a website whereby unauthorized commands are
transmitted from a user that the website trusts. Unlike cross-site
scripting (XSS), which exploits the trust a user has for a particular
site, CSRF exploits the trust that a site has in a user's browser.

In simple terms, this type of attack is made by a malicious site on
sending a request to the user that has logged into a vulnerable site.

https://en.wikipedia.org/wiki/Cross-site_request_forgery/

Fig 1 – CSRF attack illustrated in the image

Anti-forgery tokens using HTML
Form or Razor View
Anti-forgery tokens or request verification tokens are used in
ASP.NET MVC to avoid CSRF attack. Anti-forgery tokens or request
verification tokens help in preventing the CSRF attacks. The .Net
framework has a built-in support to create and validate anti-forgery
tokens. The @Html.AntiForgeryToken() method in the MVC Razor
engine creates the anti-forgery tokens. The validation of an anti-
forgery token can be achieved by decorating the controller or action
with the [ValidateAntiForgeryToken] attribute.

How does an Anti-forgery token
work?
Let's see how the server accepts or rejects a request based on the
anti-forgery token. Given in the following are the steps that are
involved in making the anti-forgery token work:

1. The client sends a request for an MVC view with the form.
2. The server returns the requested view along with two tokens,

one sent via cookie and other sent by setting to a hidden field in
the form of the view.

3. These two tokens will be passed back to the server when the
client submits the form in the view.

4. The server looks for these two tokens in the successive request
and if it doesn't find the tokens, then the request will be rejected.

It is necessary to protect the anti-forgery token as we protect
authentication tokens. So it is the best practice to use SSL. Refer to
Chapter 2, Enabling SSL for ASP.NET Web API to see how to
enable SSL for ASP.NET Web API.

Anti-forgery tokens using AJAX
It is very common to use AJAX to post data to or get data from the
server. An AJAX request sends the JSON data to server. It doesn't
send the HTML form data. To achieve sending the token via an
AJAX post, we need to use the custom HTTP header. Using Razor
syntax, we can generate the tokens by calling the
AntiForgery.GetTokens() method and attach it to the request as
given in the following code:

<script>
 @functions{
 public string GetAntiForgeryTokenValue ()
 {
 string tokenInCookie, tokenInForm;
 AntiForgery.GetTokens(null, out
tokenInCookie, out tokenInForm);
 return tokenInCookie + ":" +
tokenInForm;
 }
 }

 $.ajax("/api/contacts", {
 type: "get",
 headers: {
 'AntiForgeryToken':
'@GetAntiForgeryTokenValue()'
 },
 success: function (result) {
 alert(JSON.stringify(result));
 },
 error: function (XMLHttpRequest,
textStatus, errorThrown) {
 alert(errorThrown + " Error");
 }
 });
</script>

The tokens that are passed via AJAX should be extracted when the
request is processed. Then the extracted tokens have to be
validated using the AntiForgery.Validate method as given in the

following code snippet. The AntiForgery.Validate method throws an
exception if the tokens are invalid in the request, as follows:

void ValidateToken(HttpRequestMessage request)
{
 string tokenInCookie = "";
 string tokenInForm = "";

 IEnumerable<string> tokenHeaders;
 if
(request.Headers.TryGetValues("AntiForgeryToken",
out tokenHeaders))
 {
 var tokens =
tokenHeaders.First().Split(':');
 if (tokens.Length == 2)
 {
 tokenInCookie = tokens[0].Trim();
 tokenInForm = tokens[1].Trim();
 }
 }
 AntiForgery.Validate(tokenInCookie,
tokenInForm);
}

We can implement an authorization filter for Web API and decorate it
to action in order to validate the anti-forgery token before invoking
the action. The following code snippet shows one such authorization
filter:

namespace Chapter08.AntiForgeryToken.Filters
{
 [AttributeUsage(AttributeTargets.Method |
AttributeTargets.Class, AllowMultiple = false,
Inherited = true)]
 public class ValidateAntiForgeryTokenAttribute
: FilterAttribute, IAuthorizationFilter
 {
 public Task<HttpResponseMessage>
ExecuteAuthorizationFilterAsync(HttpActionContext
actionContext, CancellationToken
cancellationToken, Func<Task<HttpResponseMessage>>
continuation)
 {

 try
 {
 string tokenInCookie = "";
 string tokenInForm = "";

 IEnumerable<string>
AntiForgeryTokenValue;
 if
(actionContext.Request.Headers.TryGetValues("AntiF
orgeryToken", out AntiForgeryTokenValue))
 {
 var antiForgeryTokens =
AntiForgeryTokenValue.First().Split(':');
 if (antiForgeryTokens.Length
== 2)
 {
 tokenInCookie =
antiForgeryTokens [0].Trim();
 tokenInForm =
antiForgeryTokens [1].Trim();
 }
 }

AntiForgery.Validate(tokenInCookie, tokenInForm);
 }
 catch
(System.Web.Mvc.HttpAntiForgeryException e)
 {
 actionContext.Response = new
HttpResponseMessage
 {
 StatusCode =
HttpStatusCode.Forbidden,
 RequestMessage =
actionContext.ControllerContext.Request
 };
 var response = new
TaskCompletionSource<HttpResponseMessage>();

response.SetResult(actionContext.Response);
 return response.Task;
 }
 return continuation();
 }
 }
}

CSRF attacks will be refused with the 403 Forbidden error by the
server.

Summary
Short and sweet, isn't it? You just learned how to protect our Web
API from cross-site request forgery attacks.

You also learned about what is meant by a CSRF attack and how it
impacts our Web API.

Then you learned about implementing anti-forgery tokens using
HTML form and AJAX.

In the next chapter, let's see how to enable cross-origin resource
sharing in Web API.

Let's get down to the origins!

Chapter 9. Enabling Cross-
Origin Resource Sharing
(CORS) in ASP.NET Web API
This chapter will help you in learning how to enable CORS in your
Web API application.

In this chapter, we will cover the following topics:

What is CORS?
How CORS works
Setting the allowed origins
Setting the allowed HTTP methods
Setting the allowed request headers
Setting the allowed response headers
Passing credentials in cross-origin requests
Enabling CORS at various scopes

What is CORS?
According to the same-origin policy, browser security avoids any
AJAX requests from one domain to your Web API on another
domain in order to prevent a malicious site from reading sensitive
data or posting it to another site. But, in some cases, you may need
to enable other domains to call your Web API. This is where CORS
comes into the picture.

Cross-Origin Resource Sharing (CORS) allows a server to ignore
the same-origin policy as per the configuration. CORS enables
server to provide restricted access to its resources.

How CORS works
Cross-origin resource sharing design presents various HTTP
headers, such as Origin and Access-Control-Allow-Origin. These
headers will be set by a browser for cross-origin requests, if it
supports CORS.

Let's try to access the following Web API method that is not
configured to support CORS:

// GET: api/Contacts/id
public Contact Get(int id)
{
 return contacts.FirstOrDefault(x => x.Id ==
id);
}

Accessing this method from a different domain will lead to the
following error:

XMLHttpRequest cannot load
http://localhost:53858/api/contacts/1. No 'Access-
Control-Allow-Origin' header is present on the
requested resource. Origin
'http://localhost:53870' is therefore not allowed
access.

We need to pass some special headers such as Origin header in the
request to Web API methods that are configured with CORS. The
following code snippet shows one such method in Web API:

[EnableCors(origins: "http://localhost:53870",
headers: "*", methods: "*")]
// GET: api/Contacts
public IEnumerable<Contact> Get()
{
 return contacts;
}

To access this method, client needs to pass its domain in Origin
header so that it will be verified by the Web API server. The following
is the sample HTTP request with Origin header that has the
information for the domain that is sending this request:

GET http://localhost:53858/api/contacts HTTP/1.1
Host: localhost:53858
Connection: keep-alive
Accept: */*
Origin: http://localhost:53870
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/45.0.2454.85 Safari/537.36
Referer: http://localhost:53870/
Accept-Encoding: gzip, deflate, sdch
Accept-Language: en-GB,en-US;q=0.8,en;q=0.6

The sample HTTP response from server that supports CORS and
allows the request is given in the following:

HTTP/1.1 200 OK
Cache-Control: no-cache
Pragma: no-cache
Content-Type: application/json; charset=utf-8
Expires: -1
Server: Microsoft-IIS/8.0
Access-Control-Allow-Origin:
http://localhost:53870
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
Date: Fri, 04 Sep 2015 05:08:14 GMT
Content-Length: 218

[{"Id":1,"Name":"Steve","Email":"steve@gmail.com",
"Mobile":"+1(234)35434"},
{"Id":2,"Name":"Matt","Email":"matt@gmail.com","Mo
bile":"+1(234)5654"},
{"Id":3,"Name":"Mark","Email":"mark@gmail.com","Mo
bile":"+1(234)56789"}]

As you can see in the preceding response, the Web API server
acknowledges the client domain by sending the Access-Control-
Allow-Origin header with the allowed domains in response.

Setting the allowed origins
We need to supply the comma separated list of domains in the
origins parameter of the [EnableCors] attribute as given in the
following code snippet:

[EnableCors(origins: " http://localhost:53870,
http://localhost:53871", headers: "*", methods:
"*")]

As you can see, this CORS configuration only allows AJAX requests
from two domains, http://localhost:53870/ and
http://localhost:53871/, and rejects any requests from other
domains. We can also make CORS accept any requests from all
domains by passing a "*" wildcard value as follows:

[EnableCors(origins: "*", headers: "*", methods:
"*")]

It is advisable to reconsider before applying the "*" wildcard value to
origins, as it will allow any domain to make AJAX requests to your
Web API.

Setting the allowed HTTP
methods
We can also restrict the HTTP methods in CORS. This can be
achieved by supplying a comma separated list of HTTP methods that
are allowed to the [EnableCors] attribute's methods parameter as
given in the following:

[EnableCors(origins: "http://localhost:53870",
headers: "*", methods: "get,post")]
public class ContactsController : ApiController
 {
 IEnumerable<Contact> contacts = new
List<Contact>
 {
 new Contact { Id = 1, Name = "Steve",
Email = "steve@gmail.com", Mobile = "+1(234)35434"
},
 new Contact { Id = 2, Name = "Matt",
Email = "matt@gmail.com", Mobile = "+1(234)5654"
},
 new Contact { Id = 3, Name = "Mark",
Email = "mark@gmail.com", Mobile = "+1(234)56789"
}
 };

 // GET: api/Contacts
 public IEnumerable<Contact> Get()
 {
 return contacts;
 }

 // GET: api/Contacts/id
 public Contact Get(int id)
 {
 return contacts.FirstOrDefault(x =>
x.Id == id);
 }
 }

The preceding code only allows GET and POST HTTP methods. We can
also enable to allow all HTTP methods by passing a "*" wildcard
value to methods.

Setting the allowed request
headers
Sometimes, browsers send a prerequest before sending an actual
request in order to verify CORS. Such prerequests will use the HTTP
OPTIONS method and the request will have the following access
control request headers:

Access-Control-Request-Method
Access-Control-Request-Headers

The HTTP action method name that is applied on the actual request
is supplied to Access-Control-Request-Method and the list of comma
separated headers that is applied on the actual request is supplied to
Access-Control-Request-Headers. The following sample request is
one such prerequest:

OPTIONS http://localhost:53858/api/contacts
HTTP/1.1
Host: localhost:53858
Accept: */*
Origin: http://localhost:53870
Access-Control-Request-Method: PUT
Access-Control-Request-Headers: accept, x-my-
custom-header
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0;
Windows NT 6.2; WOW64; Trident/6.0)
Content-Length: 0

Now, the server will respond with the information as to whether it can
allow the HTTP method and headers in the special headers of the
prerequest for the actual request.

Here in the prerequest, the browser queried the server as to whether
it can allow the HTTP method PUT and the request headers such as

accept and x-my-custom-header. The following response from the
server confirms that it can allow the requested method and headers:

HTTP/1.1 200 OK
Cache-Control: no-cache
Pragma: no-cache
Content-Length: 0
Access-Control-Allow-Origin:
http://localhost:53870
Access-Control-Allow-Headers: x-my-custom-header
Access-Control-Allow-Methods: PUT
Date: Sun, 30 Aug 2013 05:56:22 IST

How is the server configured to allow certain request headers? This
will be configured in the headers parameter of the [EnableCors]
attribute as given in the following:

[EnableCors(origins: "http://localhost:53870",
 headers: "accept,content-type,origin,x-my-
header", methods: "put")]

Note
Note that if any specific custom headers are configured, then it is
a good practice to include at least "accept", "content-type", and
"origin", along with the custom headers.

Setting the allowed response
headers

There are some default headers that are available in response
and is made available by the browsers. Such default headers
are Content-Type, Content-Language, Cache-Control, Expires,
Pragma, and Last-Modified. These are called simple response
headers.
However, in some scenarios, you may want to expose some
special headers in the response. To achieve this, CORS
facilitates a parameter named exposedHeaders in the
[EnableCors] attribute.
For example, let's set a special header named "X-Custom-
Header" in the response. As this is a special header, it will not be
exposed by browsers in a cross-origin request by default. In
order to enable the browser to expose this special header, we
need to set the header "X-Custom-Header" in the exposedHeaders
parameter in the [EnableCors] attribute as given in the following
code snippet:

[EnableCors(origins: "*", headers: "*",
methods: "*", exposedHeaders: "X-Custom-
Header")]
public class ContactsController :
ApiController
 {
 IEnumerable<Contact> contacts = new
List<Contact>
 {
 new Contact { Id = 1, Name =
"Steve", Email = "steve@gmail.com", Mobile =
"+1(234)35434" },
 new Contact { Id = 2, Name =
"Matt", Email = "matt@gmail.com", Mobile =
"+1(234)5654" },
 new Contact { Id = 3, Name =
"Mark", Email = "mark@gmail.com", Mobile =
"+1(234)56789" }
 };

 // GET: api/Contacts
 public HttpResponseMessage Get()
 {
var response = new HttpResponseMessage()
 {
 Content = contacts
 };
response.Headers.Add("X-Custom-Header",
"ContactCustomHeaderValue");
 return response;
 }
 }

Passing credentials in cross-
origin requests
Browsers don't pass credentials such as cookies and HTTP
authentication schemes by default in cross-origin requests. To
enable passing credentials in cross-origin requests from the client,
the client has to set XMLHttpRequest.withCredentials to true as given
in the following:

$.ajax({
 type: 'get',
 url: ' http://localhost:53858 /api/contacts,
 xhrFields: {
 withCredentials: true
 }

To allow credentials in cross-origin requests, the
SupportsCredentials property should be set to true on the
[EnableCors] attribute as given in the following code:

[EnableCors(origins: "http://chapter09client.com",
headers: "*", methods: "*", SupportsCredentials =
true)]

The HTTP response will also have the Access-Control-Allow-
Credentials header, to indicate to the browser that the server is fine
to accept credentials in cross-origin requests. Using Cookie or
Authorization header, Web API authenticates the request. Once
authenticated, the browser will keep passing the authentication
information on all subsequent requests to the server.

Note
Note that we cannot set the "*" wildcard value to the origins
parameter and enable in order to support credentials at the same

time.

If the response does not have the Access-Control-Allow-Credentials
header, the AJAX call method will not receive the response as the
browser doesn't expose it, this will cause the AJAX request to fail.

Enabling CORS at various
scope
CORS can be enabled at various levels. We can set CORS at action
level, controller level, or global level. Let's see how to set CORS at
various scope.

Enable at action level
To enable CORS to a specific action, we need to decorate the action
method with the [EnableCors] attribute as given in the following code
snippet:

public class ContactsController : ApiController
{
 [EnableCors(origins: "http://localhost:53870",
headers: "*", methods: "*")]
 public HttpResponseMessage GetContacts() { ...
}

 public HttpResponseMessage GetContact(int id)
{ ... }
 public HttpResponseMessage PostContact() { ...
}
 public HttpResponseMessage PutContact(int id)
{ ... }
}

As you can see, CORS is only applicable for the GetContacts()
action method.

Enable at controller level
We can also enable CORS at a specific controller. We just need to
decorate the controller with the [EnableCors] attribute as follows:

[EnableCors(origins: "http://localhost:53870",
headers: "*", methods: "*")]
public class ContactsController : ApiController
{
 public HttpResponseMessage GetContacts() { ...
}
 public HttpResponseMessage GetContact(int id)
{ ... }
 public HttpResponseMessage PostContact() { ...
}
 public HttpResponseMessage PutContact(int id)
{ ... }
}

As you can see, CORS is applicable for any action in this controller.
However, sometimes, you may want to disable CORS for one
particular action. Let's say, we want to disable CORS for the
PutContact() action method. This can be very easily achieved by
decorating the PutContact() action using the [DisableCors] attribute
as given in the following:

[EnableCors(origins: "http://chapter09client.com",
headers: "*", methods: "*")]
public class ContactsController : ApiController
{
 public HttpResponseMessage GetContacts() { ...
}
 public HttpResponseMessage GetContact(int id)
{ ... }
 public HttpResponseMessage PostContact() { ...
}

 [DisableCors]
 public HttpResponseMessage PutContact(int id)
{ ... }
}

If CORS is enabled at controller level and you would like to disable
CORS for a specific method in the controller, then we can decorate
such methods with the DisableCors attribute as given in the
preceding code snippet.

Enable CORS globally
Sometimes, we may need to enable CORS to all controllers and
actions in the Web API. In other words, we may need to enable
CORS to the whole Web API.

This can be achieved by enabling CORS globally. We need to pass
an instance of EnableCorsAttribute to the EnableCors method in
HTTP configuration in the WebApiConfig file as given in the following:

public static class WebApiConfig
{
 public static void Register(HttpConfiguration
config)
 {
 var cors = new
EnableCorsAttribute("http://localhost:53870", "*",
"*");
 config.EnableCors(cors);
 // ...
 }
}

This global configuration can be overridden at controller or action
level. The order of precedence will be action, controller, and global.

Summary
Woohoo! You just learned how to enable cross-origin request sharing
(CORS) in our Web API.

You learned about what CORS is and how it works.

Then you learned some configuration stuff in setting up allowed
origins, HTTP methods, request headers, and response headers.

Finally, you learned about passing credentials in cross-origin
requests and enabling CORS at different scope in Web API.

Hurray! That's it, folks! Now, we know how to secure our Web API by
adopting apt security solutions from various techniques available in
the market.

Index
A

access token

obtaining / Get an access token

AJAX

using, for Anti-forgery tokens / Anti-forgery tokens using
AJAX

Anti-forgery tokens

HTML Form used / Anti-forgery tokens using HTML Form or
Razor View
Razor View used / Anti-forgery tokens using HTML Form or
Razor View
working / How does an Anti-forgery token work?
AJAX used / Anti-forgery tokens using AJAX

ASP.NET Identity 2.1

setting up / Setting up ASP.NET Identity 2.1, ASP.NET
Identity
about / ASP.NET Identity

ASP.NET Identity NuGet packages

installing / Installing the ASP.NET Identity NuGet packages

ASP.NET MVC Application

creating / Creating an ASP.NET MVC Application

ASP.NET Web API

security architecture / ASP.NET Web API security
architecture

authenticated request

sending / Send an authenticated request

authentication

about / Authentication and authorization, Authentication,
Discussing authentication
implementing, in HTTP message handlers / Implementing
authentication in HTTP message handlers

authentication filter

using, for Basic Authentication / Basic authentication using
an authentication filter
setting / Setting an authentication filter
action-level / Action-level authentication filter
controller-level / Controller-level authentication filter
global-level / Global-level authentication filter
combining, host-level authentication used / Combining
authentication filters with host-level authentication

authorization

about / Authentication and authorization, Authorization
inside controller action / Authorization inside a controller
action

B
Basic Authentication

and Windows authentication, differences / Difference
between Basic Authentication and Windows authentication

Basic authentication

Internet Information Services (IIS) used / Basic
authentication with IIS
with custom membership / Basic authentication with custom
membership
authentication filter used / Basic authentication using an
authentication filter

browser client

setting up / Setting up your browser client
Web API lookup service, implementing / Implementing Web
API lookup service
Web API, consuming with JavaScript and jQuery /
Consuming the Web API using JavaScript and jQuery
principal, setting up / Setting the principal

C
Client certificates

using, in Web API / Using client certificates in Web API
SSL Client Certificate, creating / Creating an SSL Client
Certificate
IIS, configuring / Configuring IIS to accept client certificates
verifying, in Web API / Verifying Client Certificates in Web
API

Cross-origin resource sharing (CORS)

about / What is CORS?
working / How CORS works
allowed origins, setting / Setting the allowed origins
allowed HTTP methods, setting / Setting the allowed HTTP
methods

allowed request headers, setting / Setting the allowed
request headers
allowed response headers, setting / Setting the allowed
response headers
credentials, passing in cross-origin requests / Passing
credentials in cross-origin requests
enabling, at scope / Enabling CORS at various scope

Cross-Origin Resource Sharing (CORS)

about / ASP.NET Web API security architecture

Cross-origin resource sharing (CORS), enabling

at action level / Enable at action level
at controller level / Enable at controller level
globally / Enable CORS globally

CSRF attack

URL / What is a CSRF attack?
about / What is a CSRF attack?

custom authorization filter

about / Custom authorization filters
implementing / Custom authorization filters

E
Empty Web API Application

creating / Creating an Empty Web API Application
testing / Testing the application

error result

setting / Setting an error result

F
Facebook authentication

implementing / Implementing Facebook authentication

Forms authentication

working / Working of Forms authentication
implementing, in Web API / Implementing Forms
authentication in Web API

G
GetAllContacts method

about / Adding a controller

GetContact method

about / Adding a controller

Google authentication

implementing / Implementing Google authentication

H
host-level authentication

used, for combining authentication filters / Combining
authentication filters with host-level authentication

HTML Form

using, for Anti-forgery tokens / Anti-forgery tokens using
HTML Form or Razor View

HTTP message handlers

authentication, implementing / Implementing authentication
in HTTP message handlers

I
IIS

configuring, for Client certificates / Configuring IIS to accept
client certificates
OWIN, hosting / Hosting OWIN in IIS and adding Web API
to the OWIN pipeline

Individual User Account

authentication flow / Individual User Account authentication
flow

Integrated Windows Authentication

about / What is Integrated Windows Authentication?
advantages / Advantages and disadvantages of using the
Integrated Windows Authentication mechanism
disadvantages / Advantages and disadvantages of using
the Integrated Windows Authentication mechanism

Internet Information Service (IIS)

about / Authentication

Internet Information Services (IIS)

used, for Basic Authentication / Basic authentication with
IIS

J

JavaScript Object Notation (JSON)

about / Implementing Web API lookup service

K
Katana

Windows authentication, enabling / Enabling Windows
authentication in Katana

M
Microsoft authentication

implementing / Implementing Microsoft authentication

Microsoft Management Control (MMC)

about / Creating an SSL Client Certificate

O
Open Web Interface for .Net (OWIN)

about / Setting up ASP.NET Identity 2.1

OWIN

hosting, in IIS / Hosting OWIN in IIS and adding Web API to
the OWIN pipeline
Web API, adding / Hosting OWIN in IIS and adding Web
API to the OWIN pipeline

OWIN external authentication services

using / Using OWIN external authentication services

ASP.NET MVC Application, creating / Creating an ASP.NET
MVC Application

R
Razor View

using, for Anti-forgery tokens / Anti-forgery tokens using
HTML Form or Razor View

S
Secure Sockets Layer (SSL)

about / Enforcing SSL in a Web API controller
enforcing, in Web API controller / Enforcing SSL in a Web
API controller

SSL Client Certificate

creating / Creating an SSL Client Certificate

T
Transport Level Security (TLS)

about / Enforcing SSL in a Web API controller

Twitter authentication

implementing / Implementing Twitter authentication

U
unauthorized request

sending / Sending an unauthorized request

W
Web API

Open Web Interface for .NET (OWIN) / ASP.NET Web API
security architecture
Message Handler / ASP.NET Web API security architecture
Authentication Filters / ASP.NET Web API security
architecture
Authorization Filters / ASP.NET Web API security
architecture
consuming, with JavaScript and jQuery / Consuming the
Web API using JavaScript and jQuery
contact list, obtaining / Getting a list of contacts
contact, obtaining by ID / Getting a contact by ID
application, running / Running the application
Client certificates, using / Using client certificates in Web
API
Client certificates, verifying / Verifying Client Certificates in
Web API
controllers, defining / Defining Web API Controllers and
methods
methods, defining / Defining Web API Controllers and
methods
adding, to OWIN / Hosting OWIN in IIS and adding Web
API to the OWIN pipeline
Forms authentication, implementing / Implementing Forms
authentication in Web API

Web API authentication filter

implementing / Implementing a Web API authentication filter

Web API controller

Secure Sockets Layer (SSL), enforcing / Enforcing SSL in a
Web API controller

Web API lookup service

implementing / Implementing Web API lookup service
Model, adding / Adding a model
controller, adding / Adding a controller

Windows authentication

configuring / Configuring Windows Authentication
and Basic Authentication, differences / Difference between
Basic Authentication and Windows authentication
enabling, in Katana / Enabling Windows authentication in
Katana

	ASP.NET Web API Security Essentials
	Table of Contents
	ASP.NET Web API Security Essentials
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions

	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	1. Setting up a Browser Client
	ASP.NET Web API security architecture
	Setting up your browser client
	Implementing Web API lookup service
	Adding a model
	Adding a controller

	Consuming the Web API using JavaScript and jQuery
	Getting a list of contacts
	Getting a contact by ID
	Running the application

	Authentication and authorization
	Authentication
	Authorization

	Implementing authentication in HTTP message handlers
	Setting the principal
	Using the [Authorize] attribute
	Global authorization filter
	Controller level authorization filter
	Action level authorization filter

	Custom authorization filters
	Authorization inside a controller action
	Summary

	2. Enabling SSL for ASP.NET Web API
	Enforcing SSL in a Web API controller
	Using client certificates in Web API
	Creating an SSL Client Certificate
	Configuring IIS to accept client certificates
	Verifying Client Certificates in Web API

	Summary

	3. Integrating ASP.NET Identity System with Web API
	Creating an Empty Web API Application
	Installing the ASP.NET Identity NuGet packages
	Setting up ASP.NET Identity 2.1
	ASP.NET Identity

	Defining Web API Controllers and methods
	Testing the application

	Summary

	4. Securing Web API Using OAuth2
	Hosting OWIN in IIS and adding Web API to the OWIN pipeline
	Individual User Account authentication flow
	Sending an unauthorized request
	Get an access token
	Send an authenticated request
	Summary

	5. Enabling Basic Authentication using Authentication Filter in Web API
	Basic authentication with IIS
	Basic authentication with custom membership
	Basic authentication using an authentication filter
	Setting an authentication filter
	Action-level authentication filter
	Controller-level authentication filter
	Global-level authentication filter

	Implementing a Web API authentication filter
	Setting an error result
	Combining authentication filters with host-level authentication
	Summary

	6. Securing a Web API using Forms and Windows Authentication
	Working of Forms authentication
	Implementing Forms authentication in Web API
	What is Integrated Windows Authentication?
	Advantages and disadvantages of using the Integrated Windows Authentication mechanism
	Configuring Windows Authentication
	Difference between Basic Authentication and Windows authentication
	Enabling Windows authentication in Katana
	Summary

	7. Using External Authentication Services with ASP.NET Web API
	Using OWIN external authentication services
	Creating an ASP.NET MVC Application

	Implementing Facebook authentication
	Implementing Twitter authentication
	Implementing Google authentication
	Implementing Microsoft authentication
	Discussing authentication
	Summary

	8. Avoiding Cross-Site Request Forgery Attacks in Web API
	What is a CSRF attack?
	Anti-forgery tokens using HTML Form or Razor View
	How does an Anti-forgery token work?

	Anti-forgery tokens using AJAX
	Summary

	9. Enabling Cross-Origin Resource Sharing (CORS) in ASP.NET Web API
	What is CORS?
	How CORS works
	Setting the allowed origins
	Setting the allowed HTTP methods
	Setting the allowed request headers
	Setting the allowed response headers
	Passing credentials in cross-origin requests
	Enabling CORS at various scope
	Enable at action level
	Enable at controller level
	Enable CORS globally

	Summary

	Index

